Posts

Showing posts from February 7, 2019

Lingua Lithuanica

Image
Lingua Lithuanica Lietuvių kalba Taxinomia: e familia Baltica linguarum Indoeuropaearum Locutores: 3 500 000 (Lituania) 500 000 (Foris) Sigla: 1 lt, 2 lit, 3 lit Status publicus Officialis Lituania,  Unio Europaea, Polonia. Privata Lituania, alibi Litterae: Scriptura: Abecedarium Latinum Procuratio: Commissio Linguae Lithuanicae Familiae linguisticae coloribus Vicipaedicis pictae Lingua Lithuanica [1] vel Lituana [2] (Lithuanice lietuvių kalba ) est lingua Indoeuropaea familiae Balticae subiuncta. Cum lingua Latviana linguas Balticas orientales format. Haec lingua dicitur quam antiquissima esse, nam hodie multae linguae protoindoeuropaeae radices et proprietates grammaticae manent in lingua Lithuanica. Linguae Lithuanae declinationibus casus septem sunt: nominativus, genitivus, dativus, accusativus, vocativus, locativus, instrumentalis. Index 1 Loci 2 Orthographia 3 Exemplum (Pater noste...

Mind the…(number seqeunce)

Image
0 $begingroup$ Find the next number in the sequence: 2, 3, 7, 23, 89, 113, ? Hint: A corresponding sequence is ?, ?, 4, 6, 8, ?, ? number-sequence share | improve this question asked 23 mins ago Arvasu Kulkarni Arvasu Kulkarni 40 3 New contributor Arvasu Kulkarni is a new contributor to this site. Take care in asking for clarification, commenting, and answering. Check out our Code of Conduct. $endgroup$ ...

How to do add and subtraction in between three inputs for predict the value using python

Image
0 $begingroup$ This question is related to this unsupported operand type(s) for -: 'list' and 'list' using python I want to predict value according to the three inputs(X1,X2,X3) . for prediction value, three inputs X1-X2+X3 = predict value according to this algorithm value will be predicted using LSTM neural network. I wrote the code but it gives me so many errors. Can anyone suggest me to solve this error? here is my code: data.columns = ['X1', 'X2', 'X3','Y'] data = data.dropna () y =data['Y'].astype(int) cols=['X1', 'X2', 'X3'] x=data[cols].astype(int) scaler_x = preprocessing.MinMaxScaler(feature_range =(-1, 1)) x = np.array(x).reshape ((len(x),3 )) x = scaler_x.fit_transform(x) scaler_y = preprocessing.MinMaxScaler(...