Factio socialistica Helvetica

Multi tool use

-2
Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.
Factio Socialistica Helvetica (Germanice Sozialdemokratische Partei der Schweiz/SPS, Francice Parti socialiste suisse /PSS; Italiane Partito socialista svizzero /PSS) est factio politica sociodemocratica Helvetica decreta die 21 Octobris 1888, quae ad Internationalem Socialistica et Factionem socialisticam Europaeorum pertinet. Praeses huius factionis est nunc Christianus Levrat. Huic factioni sunt nunc consiliarii foederales Mauritius Leuenberger ac Michelina Calmy-Rey. Politicae suae sunt pacifismus ac respectum subsidii sociali, protectionis naturae contra mutationem climaticam, matrimonii aequalis et integrationis immigrationum proest.
Nexus externi |
Situs proprius (Germanice et Francice)
Situs proprius factionis pagi Ticini (Italice)
Suffragia |
Factio Socialistica Helvetica ab anno 1919, cum Consilii Nationalis petitiones secundum partitionem congruentem parti suffragiorum factae sunt, consecuta est[1]:
Anno
|
Suffragiorum pars
|
Consiliarii nationales
|
Legati ad Consilium Civitatum
|
2015
|
18.8 %
|
43
|
12
|
2011
|
18.7 %
|
46
|
11
|
2007
|
19.5 %
|
43
|
9
|
2003
|
23.3 %
|
52
|
9
|
1999
|
22.5 %
|
51
|
6
|
1995
|
21.8 %
|
54
|
5
|
1991
|
18.5 %
|
41
|
3
|
1987
|
18.4 %
|
41
|
5
|
1983
|
22.8 %
|
47
|
6
|
1979
|
24.4 %
|
51
|
9
|
1975
|
24.9 %
|
55
|
5
|
1971
|
22.9 %
|
46
|
4
|
1967
|
23.5 %
|
50
|
2
|
1963
|
26.6 %
|
53
|
3
|
1959
|
26.4 %
|
51
|
2
|
1955
|
27.0 %
|
53
|
5
|
1951
|
26.0 %
|
49
|
4
|
1947
|
26.2 %
|
48
|
5
|
1943
|
28.6 %
|
56
|
5
|
1939
|
(25.9) % [2]
|
45
|
3
|
1935
|
28.0 %
|
50
|
3
|
1931
|
26.9 %
|
49
|
2
|
1928
|
27.4 %
|
50
|
-
|
1925
|
25.8 %
|
49
|
2
|
1922
|
23.3 %
|
43
|
1
|
1919
|
23.5 %
|
41
|
-
|
Nota |
↑ Fons: Atlas politicus Helvetiae (Officium Foederale Statisticae)
↑ Anno 1939 in aliquis pagis petitiones tacitae fuerunt, ergo suffragiorum partem cum aliis petitionibus compariri non possumus
Factiones politicae Helveticae
|
|
In Consilio Foederali
|
Factio Liberalis Democratica · Factio Popularis · Factio Popularis Christiana Democratica · Factio Socialistica · Factio Civilis Democratica Helvetica
|
Aliae praesentes factiones |
Factio Christiana Socialis · Democrates Helvetici · Factio Evangelica · Virides · Factio Viridis Liberalis· Foedus Ticinense · Unio Democratica Foederalis · Factio Laboris
|
Antiquae factiones |
Foedus Liberorum; Republicani ; Factio Agricolarum, Commercii et Equitum · Factio Liberalis
|
|
|
KYMcPbQf myDMcAZrTnKd,IL3aFq jnrW Ri59JeHKIsbxr50JGrHgY2JggBScilHpxvr blji,FmDM
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...