Concilium Lateranense Quartum

Multi tool use
Concilium Lateranense Quartum fuit oecumenicum concilium ecclesiae catholicae. Hoc concilium a papa Innocentio III cum bulla Vineam Domini Sabaoth die 19 Aprilis 1213 constitutum est et mense Novembre 1215 convocatum est.
Bibliographia |
Fourth Lateran Council (1215) in The Catholic Encyclopedia: an international work of reference (Novi Eboraci: Appleton, 1907–1914) .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice)
- Stephan Kuttner, Antonio García y García, "A New Eyewitness Account of the Fourth Lateran Council" in Traditio vol. 20 (1964) pp. 115-178
- Achille Luchaire, "Un document retrouvé" in Journal des savants (1905) pp. 557-568 Textus huius documenti
Nexus externi |
Decreta Concilii
(Anglice)
Decreta Concilii
(Anglice, Italiane)
Decreta Concilii
(Latine)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad religionem spectat. Amplifica, si potes!
|
Oecumenica Concilia
|
|
Concilia ab Ecclesiis orientalibus, Ecclesiis Orthodoxis et Ecclesia Catholica agnita |
Nicaenum I | Constantinopolitanum I | Ephesinum
|
Concilia ab Ecclesiis Orthodoxis et Ecclesia Catholica agnita |
Chalcedonense | Constantinopolitanum II | Constantinopolitanum III | Nicaenum II
|
Concilia a sola Ecclesia Catholica agnita |
Constantinopolitanum IV | Lateranense I | Lateranense II | Lateranense III | Lateranense IV | Lugdunense I | Lugdunense II | Viennense | Constantiense | Basiliense | Lateranense V | Tridentinum | Vaticanum I | Vaticanum II
|
Concilia a solis Ecclesiis Orthodoxis agnita |
Quinisextum | Constantinopolitanum V | Synodus Hierosolymitana
|
Concilium a solis Ecclesiis orientalibus agnitum |
Ephesinum II |
|
|
BNuK7h4CrYLPWGcbhfmWn8XyOiou5X WrMSXoyY,HDcEgp,lI q22,XehARXORxJoHrCs5j,k7bpJn
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...