Tantum ergo

Multi tool use

Sandrus Botticelli: ultima eucharistia (viaticum) sancti Hieronymi, circa 1495
Tantum ergo est hymnus et oratio, quae Eucharistiam laudat. Hic hymnus et inter festas Diei Cenae Domini, Corporis Domini et inter adorationem eucharisticam canitur. Tantum ergo ex ultimis duabus strophis hymni Pange Lingua a Thoma Aquinate scripti constat.
Textus |
Tantum ergo Sacramentum
Veneremur cernui:
Et antiquum documentum
Novo cedat ritui:
Praestet fides supplementum
Sensuum defectui.
Genitori, Genitoque
Laus et jubilatio,
Salus, honor, virtus quoque
Sit et benedictio:
Procedenti ab utroque
Compar sit laudatio.
Amen.
Nexus externi |

|
Vide Tantum ergo apud Vicifontem.
|
- Carmen Tantum ergo scriptum vel audibile
Hymni et preces Christianae
Adeste Fideles · Adoro te devote · Ad regias Agni dapes · Aeterne Rex Altissime · Agnus Dei · Alma nox · Alma Redemptoris Mater · Alto ex Olympi vertice · Amazing Grace · Angele Dei · Angelus Domini · Anima christi · A solis ortus cardine · Audi benigne Conditor · Aurora, solis nuntia · Ave Maria · Ave maris stella · Ave Regina Coelorum · Ave verum corpus · Beata nobis gaudia · Beate Pastor Petre · Benedictus · Benedictus es Domine Deus · Caelestis agni · Caelestis aulae nuntius · Caelestis urbs Jerusalem · Caelitum Joseph decus · Christe sanctorum · Confiteor · Cor arca · Conditor alme siderum · Credo · Crudeles Herodes Deum · Custodes · Decora lux aeternitatis · Deus tuorum militum · Domare cordis impetus · Genuit puerpera regem · Gloria in excelsis · Gloria Patri · Kyrie · Lauda Sion · Litaniae Lauretanae · Litaniae Sanctorum · Litaniae Iesu Christi Sacerdotis et Victimae · Magnificat · Memorare · Nunc dimittis · Nunc Sancte nobis Spiritus · O Sanctissima · Pange Lingua · Pater noster · Quem pastores laudavere · Regina Caeli · Requiem · Salve Regina · Sanctus · Signore delle cime · Signum Crucis · Stabat Mater · Sub tuum praesidium · Symbolum Apostolorum · Symbolum Nicaenum Constantinopolitanum · Symbolum Quicumque · Tantum ergo · Te Deum · Tota Pulchra Es · Veni Creator Spiritus · Veni Redemptor Gentium · Veni Sancte Spiritus · Vexilla Regis
Ordines orationum
Rosarium
Y,W5 R hc,Orsq,03BuCSMYbkEFYfvnanjHRCVQTse8 q,WxYq40e9a budr,k,Yj5K jTxd,vgpYpV C
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...