Universitas Mancuniensis

Multi tool use

Ianua universitatis inter Aulam Whitworth et turrem universitatis

Aedificium principale Instituti Scientiae et Technologiae

Aedificium bibliothecae universitatis
Universitas Mancuniensis (Anglice University of Manchester) est coniunctio (anno 2004 facta) duarum universitatum Mancunii conditarum, scilicet:
Universitas Victoria Mancuniensis (Victoria University of Manchester), anno 1851 condita sub nomine Collegii Owens; quod collegium in Universitatem Victoriam foederalem anno 1880 incorporatum est, annoque 1904 rursus separatum sub appellatione Universitatis Victoriae Mancuniensis
Institutum Scientiae et Technologiae Universitatis Mancuniensis (University of Manchester Institute of Science and Technology), anno 1824 sub nomine Instituti Mechanicorum condita, postea Manchester Municipal School of Technology nuncupata. Universitatis motto "Cognitio, sapientia, humanitas" est.
Etiam universitati tributa sunt Museum Mancuniense, Pinacotheca Whitworth et (sub tutela Bibliothecae Universitatis Mancuniensis) Bibliotheca Iohannes Rylands.
Nexus externi |
Bibliographia |
- Brian Pullan, Michele Abendstern, A history of the University of Manchester, 1951-73. Mancunii: Manchester University Press, 2000. ISBN 0-7190-5670-5 Paginae selectae
Lege etiam |
- Charlton, H. B. (1951) Portrait of a University, 1851-1951. Mancunii: Manchester University Press
- Fiddes, Edward (1937) Chapters in the History of Owens College and of Manchester University, 1851-1914. Mancunii: Manchester University Press
- Hartog, P. J. (1900), editor The Owens College, Manchester: a brief history of the college and description of its various departments. Mancunii: J. E. Cornish
- Pullan, Brian, cum Michele Abendstern (2004) A History of the University of Manchester, 1973-90. Mancunii: Manchester University Press ISBN 071906242X
- Thompson, Joseph (1886) The Owens College--its foundation and growth. Mancunii: J. E. Cornish
OpyK238X7EG8Sf 1CQbJE,aqbJTc91h iw700uYWQxcCfUowJ5a F,BNpTD8WU kh0lunmU1AFw5X0T,jqKyqdx2E gEJGAmsb9zH,obV
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...