Praemium Gottfried Keller

Multi tool use
Praemium Gottfried Keller est litterarum praemium Helveticum.
Laureati |
- 2013 scriptorum grex Bern ist überall
- 2010 Gerold Späth
- 2007 Fabius Pusterla
- 2004 Nicolaus Merz
- 2001 Agota Kristof
- 1999 Petrus Bichsel
- 1997 Ioannes Orelli
- 1994 Gerhard Meier
- 1992 Erica Burkart
- 1989 Iacobus Mercanton
- 1985 Herbertus Lüthy
- 1983 Hermannus Lenz
- 1981 Philippus Jaccottet
- 1979 Maximus Wehrli
- 1977 Elias Canetti
- 1975 Ioannes Ursinus de Balthasar
- 1973 Ignatius Silone
- 1971 Marcellus Raymond
- 1969 Golo Mann
- 1967 Edzard Schaper
|
- 1965 Meinradus Inglin
- 1962 Aemilius Staiger
- 1959 Mauritius Zermatten
- 1956 Maximus Rychner
- 1954 Werner Kaegi
- 1952 Gertrud von Le Fort
- 1949 Rudolfus Kassner
- 1947 Fritz Ernst
- 1943 Robertus Faesi
- 1938 Ernestus Gagliardi
- 1936 Hermannus Hesse
- 1933 Festgabe Universität Zürich
- 1931 Ioannes Carossa
- 1929 Iosephus Nadler
- 1927 Carolus Ferdinandus Ramuz
- 1925 Henricus Federer
- 1922 Iacobus Bosshart
|
Nexus externus |
- www.gottfried-keller-preis.ch Praemii pagina officialis
m6 z0F8i,5ja,8ce,YfQlf,C2txby,DU vh8sA,IQ7Fcq9 0ZhPv4N,PfA
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...