Saeculum 16

Multi tool use

Anno 1517 Martinus Luther 95 theses ad ostium ecclesiae Wittenbergae adfixit.
Saeculum 16 saeculum est quod annos 1501–1600 comprehendit.
Eventa |
1512: Regnum Navarrae a Castella occupatum est
1517: Martinus Luther 95 theses ad ostium ecclesiae Wittenbergae adfixit
1520—1566: Suleimanus I Imperium Ottomanicum regnans
1521: Conquisitatores Hispani imperium Aztecorum occupaverunt
1529: Turcici Vindobonam circumsederunt
1533: Conquisitatores Hispani Imperium Incarum occupaverunt
1534: Communio Anglicana a Henrico VIII constituta
1545—1563: Concilium Tridentinum
1582: Calendarium Gregorianum in usu receptum
Homines praeclari |
Albertus Durerus (1471—1528)
Michael Angelus Bonarotius (1475—1564)
Thomas Morus (1478—1535)
Martinus Luther (1483—1546)
Ferdinandus Cortesius (1485—1547)
Benvenuto Cellini (1500—1571)
Tycho Brahe (1546—1601)
Michael de Cervantes Saavedra (1547—1616)
Gulielmus Shakesperius (1564-1616)
Decennia annique |
saeculum 15 - saeculum 16 - saeculum 17
|
1491
|
1492
|
1493
|
1494
|
1495
|
1496
|
1497
|
1498
|
1499
|
1500
|
|
1501
|
1502
|
1503
|
1504
|
1505
|
1506
|
1507
|
1508
|
1509
|
1510
|
|
1511
|
1512
|
1513
|
1514
|
1515
|
1516
|
1517
|
1518
|
1519
|
1520
|
|
1521
|
1522
|
1523
|
1524
|
1525
|
1526
|
1527
|
1528
|
1529
|
1530
|
|
1531
|
1532
|
1533
|
1534
|
1535
|
1536
|
1537
|
1538
|
1539
|
1540
|
|
1541
|
1542
|
1543
|
1544
|
1545
|
1546
|
1547
|
1548
|
1549
|
1550
|
|
1551
|
1552
|
1553
|
1554
|
1555
|
1556
|
1557
|
1558
|
1559
|
1560
|
|
1561
|
1562
|
1563
|
1564
|
1565
|
1566
|
1567
|
1568
|
1569
|
1570
|
|
1571
|
1572
|
1573
|
1574
|
1575
|
1576
|
1577
|
1578
|
1579
|
1580
|
|
1581
|
1582
|
1583
|
1584
|
1585
|
1586
|
1587
|
1588
|
1589
|
1590
|
|
1591
|
1592
|
1593
|
1594
|
1595
|
1596
|
1597
|
1598
|
1599
|
1600
|
|
1601
|
1602
|
1603
|
1604
|
1605
|
1606
|
1607
|
1608
|
1609
|
1610
|
B5KcaRRi,EyMCD72KVPqPM5 N9KVhDxhy1v6enjGx,I9UNiHM3q06A1wOhPYI3tMX 9Duv6gANv2uC75t1J qJcx
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...