Afroamericani

Multi tool use
Afroamericani sive Americani nigricolores (vulgo African Americans, Black Americans) sunt incolae Civitatum Foederatarum Americae cuius maiores in Africa Subsahariana orti sunt. Plerumque homines nigricolores significat, cuius maiores ante Bellum Civile Americanum in Africa capti sunt et in Americanam servi invecti sunt. Etiam aliquando advenas recentiores et eius progeniem comprehendit.
Afroamericani sunt secunda maxima grex rassialis in America, post Americanos albicolores; secundum aestimationem census, anno 2012 homines se nigricolores vel Afroamericanos declarantes 13.1% numeri incolarum componebant.
Nexus interni
Bibliographia |
- Altman, Susan. The Encyclopedia of African-American Heritage. ISBN 0816041253.
- Finkelman, Paul, ed. 2006. Encyclopedia of African American History, 1619-1895: From the Colonial Period to the Age of Frederick Douglass. 3 vol. Oxford University Press.
- Finkelman, Paul, ed. 2009. Encyclopedia of African American History, 1896 to the Present: From the Age of Segregation to the Twenty-first Century. 5 vol. Oxford University Press.
- Franklin, John Hope, et Alfred Moss 1947, 2001. From Slavery to Freedom: A History of African Americans. McGraw-Hill Education.
- Gates, Henry L., et Evelyn Brooks Higginbotham, eds. 2004. African American Lives. Oxford University Press.
- Hine, Darlene Clark, Rosalyn Terborg-Penn, et Elsa Barkley Brown, eds. 2005. Black Women in America: An Historical Encyclopedia. Bloomingtoniae: Indiana University Press.
- Kranz, Rachel. 2004. African-American Business Leaders and Entrepreneurs. Infobase Publishing.
- Salzman, Jack, ed. 1996. Encyclopedia of Afro-American culture and history. Novi Eboraci: Macmillan Library Reference.
- Stewart, Earl L. 1998. African American Music: An Introduction. ISBN 0028602943.
- Southern, Eileen. 1997. The Music of Black Americans: A History. Ed. 3a. Novi Eboraci: W. W. Norton & Company. ISBN 0393971414.
jy Xfu1RyS IJY9,n Xe9xb,gK,qqp F,rlSMc8q3P23J0TvonryCFOWVWp12SyWJFR0PQ tlIbNMD2LKApqvLtjaWEy2mNwlG4,eL
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...