Why does AES have exactly 10 rounds for a 128-bit key, 12 for 192 bits and 14 for a 256-bit key size?
$begingroup$
I was reading about the AES algorithm to be used in one of our projects and found that the exact number of rounds is fixed in AES for specific key sizes:
*128-bit key size -> 10 rounds
*192-bit key size -> 12 rounds
*256-bit key size -> 14 rounds
Why these specific numbers of rounds only?
aes
New contributor
$endgroup$
add a comment |
$begingroup$
I was reading about the AES algorithm to be used in one of our projects and found that the exact number of rounds is fixed in AES for specific key sizes:
*128-bit key size -> 10 rounds
*192-bit key size -> 12 rounds
*256-bit key size -> 14 rounds
Why these specific numbers of rounds only?
aes
New contributor
$endgroup$
add a comment |
$begingroup$
I was reading about the AES algorithm to be used in one of our projects and found that the exact number of rounds is fixed in AES for specific key sizes:
*128-bit key size -> 10 rounds
*192-bit key size -> 12 rounds
*256-bit key size -> 14 rounds
Why these specific numbers of rounds only?
aes
New contributor
$endgroup$
I was reading about the AES algorithm to be used in one of our projects and found that the exact number of rounds is fixed in AES for specific key sizes:
*128-bit key size -> 10 rounds
*192-bit key size -> 12 rounds
*256-bit key size -> 14 rounds
Why these specific numbers of rounds only?
aes
aes
New contributor
New contributor
edited 24 mins ago
forest
4,44511641
4,44511641
New contributor
asked 2 hours ago
kapilkapil
282
282
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Why these specific number of rounds only?
Because AES is a standard; AES is an acronym for "Advanced Encryption Standard".
The standard specifies these specific number of rounds to ensure that different implementations are interoperable.
Why not more or less?
The reason these specific numbers of rounds were chosen was a choice of the designers. They did a lot of math to determine that these were the sweet spot between sufficient security and optimal performance.
Less might be insecure, and more might be slower with no benefit.
To quote the above book (from Section 3.5 The Number of Rounds):
For Rijndael versions with a longer key, the number of rounds was raised by one for every additional 32 bits in the cipher key. This was done for the following reasons:
One of the main objectives is the absence of shortcut attacks, i.e. attacks that are more efficient than an exhaustive key search. Since the workload of an exhaustive key search grows with the key length, shortcut attacks can afford to be less efficient for longer keys.
(Partially) known-key and related-key attacks exploit the knowledge of cipher key bits or the ability to apply different cipher keys. If the cipher key grows, the range of possibilities available to the cryptanalyst increases.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "281"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
kapil is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68199%2fwhy-does-aes-have-exactly-10-rounds-for-a-128-bit-key-12-for-192-bits-and-14-fo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Why these specific number of rounds only?
Because AES is a standard; AES is an acronym for "Advanced Encryption Standard".
The standard specifies these specific number of rounds to ensure that different implementations are interoperable.
Why not more or less?
The reason these specific numbers of rounds were chosen was a choice of the designers. They did a lot of math to determine that these were the sweet spot between sufficient security and optimal performance.
Less might be insecure, and more might be slower with no benefit.
To quote the above book (from Section 3.5 The Number of Rounds):
For Rijndael versions with a longer key, the number of rounds was raised by one for every additional 32 bits in the cipher key. This was done for the following reasons:
One of the main objectives is the absence of shortcut attacks, i.e. attacks that are more efficient than an exhaustive key search. Since the workload of an exhaustive key search grows with the key length, shortcut attacks can afford to be less efficient for longer keys.
(Partially) known-key and related-key attacks exploit the knowledge of cipher key bits or the ability to apply different cipher keys. If the cipher key grows, the range of possibilities available to the cryptanalyst increases.
$endgroup$
add a comment |
$begingroup$
Why these specific number of rounds only?
Because AES is a standard; AES is an acronym for "Advanced Encryption Standard".
The standard specifies these specific number of rounds to ensure that different implementations are interoperable.
Why not more or less?
The reason these specific numbers of rounds were chosen was a choice of the designers. They did a lot of math to determine that these were the sweet spot between sufficient security and optimal performance.
Less might be insecure, and more might be slower with no benefit.
To quote the above book (from Section 3.5 The Number of Rounds):
For Rijndael versions with a longer key, the number of rounds was raised by one for every additional 32 bits in the cipher key. This was done for the following reasons:
One of the main objectives is the absence of shortcut attacks, i.e. attacks that are more efficient than an exhaustive key search. Since the workload of an exhaustive key search grows with the key length, shortcut attacks can afford to be less efficient for longer keys.
(Partially) known-key and related-key attacks exploit the knowledge of cipher key bits or the ability to apply different cipher keys. If the cipher key grows, the range of possibilities available to the cryptanalyst increases.
$endgroup$
add a comment |
$begingroup$
Why these specific number of rounds only?
Because AES is a standard; AES is an acronym for "Advanced Encryption Standard".
The standard specifies these specific number of rounds to ensure that different implementations are interoperable.
Why not more or less?
The reason these specific numbers of rounds were chosen was a choice of the designers. They did a lot of math to determine that these were the sweet spot between sufficient security and optimal performance.
Less might be insecure, and more might be slower with no benefit.
To quote the above book (from Section 3.5 The Number of Rounds):
For Rijndael versions with a longer key, the number of rounds was raised by one for every additional 32 bits in the cipher key. This was done for the following reasons:
One of the main objectives is the absence of shortcut attacks, i.e. attacks that are more efficient than an exhaustive key search. Since the workload of an exhaustive key search grows with the key length, shortcut attacks can afford to be less efficient for longer keys.
(Partially) known-key and related-key attacks exploit the knowledge of cipher key bits or the ability to apply different cipher keys. If the cipher key grows, the range of possibilities available to the cryptanalyst increases.
$endgroup$
Why these specific number of rounds only?
Because AES is a standard; AES is an acronym for "Advanced Encryption Standard".
The standard specifies these specific number of rounds to ensure that different implementations are interoperable.
Why not more or less?
The reason these specific numbers of rounds were chosen was a choice of the designers. They did a lot of math to determine that these were the sweet spot between sufficient security and optimal performance.
Less might be insecure, and more might be slower with no benefit.
To quote the above book (from Section 3.5 The Number of Rounds):
For Rijndael versions with a longer key, the number of rounds was raised by one for every additional 32 bits in the cipher key. This was done for the following reasons:
One of the main objectives is the absence of shortcut attacks, i.e. attacks that are more efficient than an exhaustive key search. Since the workload of an exhaustive key search grows with the key length, shortcut attacks can afford to be less efficient for longer keys.
(Partially) known-key and related-key attacks exploit the knowledge of cipher key bits or the ability to apply different cipher keys. If the cipher key grows, the range of possibilities available to the cryptanalyst increases.
edited 59 mins ago
puzzlepalace
2,8701133
2,8701133
answered 2 hours ago
Ella Rose♦Ella Rose
16.5k44281
16.5k44281
add a comment |
add a comment |
kapil is a new contributor. Be nice, and check out our Code of Conduct.
kapil is a new contributor. Be nice, and check out our Code of Conduct.
kapil is a new contributor. Be nice, and check out our Code of Conduct.
kapil is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Cryptography Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcrypto.stackexchange.com%2fquestions%2f68199%2fwhy-does-aes-have-exactly-10-rounds-for-a-128-bit-key-12-for-192-bits-and-14-fo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown