Machina photographica

Multi tool use

Photomachina moderna, species
Canon EOS 600D seriei
Canon EOS.

Photomachinula moderna, species
Sony Cyber-shot DSC-WX300 seriei
Cyber-shot.
Machina photographica[1] est machina quae imagines luce captas facit. Varia genera machinarum photographicarum sunt, sicut photomachina,[2] genus magnum quod imagines qualitativas photographat et in altis particulas imaginales appropinquare potest, et photomachinula,[3] genus compactum quod fere idem ut photomachina. Machinae photographicae modernae, quae technologia digitalis adhibent, suae imagines in tabella memoriae servant et in computatro transferri possunt ibi conservari et recenseri etiam possunt. Machinae photographicae modernae autofocum quoque habent, qualitas ubi imago spontaneum defigitur, dum in vetustioribus imago defigi manu debet.
Nexus interni
- Lenticulare vitrum
- Machina cinematographica
- Olympus
Notae |
↑ Ebbe Vilborg, Norstedts svensk-latinska ordbok, editio secunda. Norstedts Akademiska Förlag, Holmia, 2009. Alium vocabulum est "machinula photographica". Adiectivum "photographicus" moderne creatus est.
↑
Fons nominis Latini desideratur (addito fonte, hanc formulam remove)
↑ Anglicae camera Latine. Traupman, Ioannes. 2007. Latin and English Dictionary. Ed. 3a. p. 486. Philadelphiae: St. Joseph's University. ISBN 9780553590128.
Nexus externi |

|
Vicimedia Communia plura habent quae ad machinas photographicas spectant.
|
T5ubYSIY98toWoTqjUPJJwhjUcdkGuTo F
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...