Monialis

Multi tool use

Monialis in claustro monasterii, Photographema a Doris Ulmann factum, 1930
Monialis est sodalis feminea ordinis Christiani vel Buddhistici.
Nomen |
Cum religiosi initio voce monachi appellati sint, forma feminea monacha numquam generaliter in usu erat. Vox ab Augustino, Gregorio Magno et Gregorio Turonensi adhibita est (et adhuc lingua Italiana forma monaca vivit), sed verbum Latinum multo usitatius est monialis, deductum a sanctimonalis, feminam Deo dedicatam designans.
Sunt etiam aliae voces feminam consecratam valentes:
- Vox nonna origine Aegyptiaca esse videtur (cf. Anglice nun, Theodisce Nonne)
soror: Appellatio pro sodalibus femineis cuiuslibet vitae consecratae generis in usu, plerumque autem pro iis, quae operibus externis deditae "vitam activam" agunt, cum monachae sive nonnae clausura papali a mundo seclusae sint, ut "vitae contemplativae" navent.
soror monialis, virgo monialis: idem ac monialis valet
(soror) inclusa, (soror) reclusa: Monacha, quae libero arbitrio in inclusorium sive reclusorium clavibus vel parietibus includi iussit, deinde sola fenestra cum externis coniuncta, ut perfectius vitam contemplativam ageret.
Nexus interni
- Monachus
- Religiosus
- Ordo religiosus
- Vita monastica
Nexus externi |
- Vox Nonnen, in: Kleine Enzyklopädie des deutschen Mittelalters (status die 4 Dec. 2010)
Constitutio apostolica "Sponsa Christi", 1950
Decretum de accomodata renovatione vitae religiosae "Perfectae caritatis", AAS 58 (1966) 702-712
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad religionem spectat. Amplifica, si potes!
|
x5ddWM w,s8z N UwExCx8,LpSSsffzUV1k ly B9 furgsU,SRIpKO1Tz Uai8Qh jW5Ute4ulmNr z,N P,xC9OsBWdFoaRo
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...