Corpus iuris canonici

Multi tool use

Pagina 342 primi voluminis editionis Corporis iuris canonici anno 1879
Corpus iuris canonici est collectio sex librorum ius canonicum Ecclesiae catholicae continentium multoties per scribis medii aevi rescripta et tandem arte typographica inventa sub proelo posita et anno 1582 emendata Gregorii papae XIII auctoritate promulgata. In tribunalibus Ecclesiae Catholicae valebat usque ad Codicem iuris canonici anno 1917 promulgatam. Sex libri sunt:
Decretum Gratiani (anno circa 1150 compilatum)
Liber extra seu Decretales Gregori papae IX (anno 1234 promulgatus)
Liber sextus Bonifacii papae VIII (anno 1298 promulgatus)
Constitutiones Clementinae {anno 1317 promulgatae)
Constitutiones Extravagantes Ioannis papae XXII (anno 1325 compilatae)
Constitutiones Extravagantes communes (per medium aevum senescentem compilatae et tandem anno 1507 sub forma finale impressae)
Lege etiam |
Emil Friedberg, ed., Corpus iuris canonici (2 volumina, Lipsiae 1879-1882, multoties iterum impressa)
Nexus externi |
- Codex Iuris Canonici anni 1983
De Corpore iuris canonici in The Catholic Encyclopedia: an international work of reference (Novi Eboraci: Appleton, 1907–1914) .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice)
- Decretum Gratiani
- Decretales Gregorii IX (Liber Extra)
H5BORbep qR desix OQcn 4sPD8,A1jRO3tX1,dzMVOfdMRnUfZf,DoG0Cf1skB0M7J 55CLjE07nO4K2zbDImQ8Rd,oAUIXuzN6ZPTdO7 P
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...