Zemblan

Multi tool use
Zemblan (nomen Anglicum; Latine nuncupare possumus "lingua Zemblana") est sermo regni ficticii Zemblae in Europa septentrionali, a Vladimiro Nabokov inventus in mythistoria sua Pale Fire anno 1962 edita.
Glossarium Zemblanum |
bogtur: miles antiquus
bore: villa montana
coramen: lorum
garl, pl. garlien: puella
grunter: vilicus
hotinguens: tegumentum interius
kamergrum: camerarius
Kongsskugg-sio: speculum regale (titulus operis)
kot or?: quota hora est?
lumbarkamer: apotheca
miragarl: puella imaginaria
muderperlwelk: nubeculus iridescens
nattdett: filius noctis
promnad: ambulatio
raghdirst: sitis talionis
situla: situla
vebodar: pascua aestiva
vespert: vespertinus
yeg ved ik: nescio
Litterae Zemblanae |
- Historia Zemblica
Kongsskugg-sio ("speculum regale"), opus saeculi XII, anno 1798 ab Hodinski editum
- Amphitheatricus, poëta
- Arnor, poëta et sculptor; auctor versuum:
- On sagaren werem termkin tri stana
- verbalala wod gev ut tri phantana
- Conmal, versionum Shakesperianorum auctor inter quos Timon Afinsken
Linguae ficticiae
Terra Media |
linguae Alforum: Eldarin Communis · lingua Goldogrin · lingua Ilkorin · Lingua Quendian Primigenium · Lingua Quenya · Lingua Sindarin · Lingua Telerin linguae hominum: Lingua Adunaic · Lingua Rohirric · Lingua Taliska · Lingua Westron aliae linguae: Black Speech · Lingua Khuzdul · Lingua Ent · Lingua Valarin
|
Stargate |
Lingua Antiquorum · Lingua Goa'uld · Lingua Unas
|
Star Trek |
Lingua Klingon |
Star Wars |
Lingua Hutt |
Cetera |
Latina mercatoria · Lingua Martiana · Nadsat · Newspeak · Speedtalk · Zemblan
|
De hac re nexus intervici usque adhuc absunt. Adde, si reppereris.
GgZi GM,ik0qs DnxpZ7ga,YmNILEmBFOi
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...