Durnovaria

Multi tool use
Oppidi collocatio in comitatu Dorcestria
Durnovaria, vulgo Dorchester et lingua Latina recentiori interdum Dorcestria, est oppidum et caput comitatus Dorcestriensis in Anglia meridioccidentali situm. Fuit olim urbs Romana caputque civitatis Durotrigum, ad viam iacens quae ab Isca Dumnoniorum Londinii tendit. Ibi nundinae tenebantur ab anno 979.[1]

Aqua municipalis (
Town Pump) et forum frumentarium (
Corn Exchange) oppidi Durnovariae
Notae |
↑ Samantha Letters, "Gazetteer of Markets and Fairs in England and Wales to 1516"

Tabula geographica Durnovariae
Ordnance Survey
Bibliographia |
- "Dorchester" in Samuel Lewis, ed., A Topographical Dictionary of England (7a ed. 1848. Textus)
- "Friaries: The Franciscans of Dorchester" in Victoria History of the Counties of England (Londinii, 1901- ~) Dorset vol. 2 pp. 93-95
- "Hospitals: Dorchester" in Victoria History of the Counties of England (Londinii, 1901- ~) Dorset vol. 2 pp. 101-103
- De urbe Romana
- "Durnovaria" in A. L. F. Rivet, Colin Smith, The Place-Names of Roman Britain (Londinii: Batsford, 1979) pp. 345-346
- "Dorchester" in Tabula Imperii Romani: Condate–Glevum–Londinium–Lutetia (Londinii: Oxford University Press, 1983. ISBN 0197260209) pp. 44-45
- John Wacher, The Towns of Roman Britain (Londinii: Batsford, 1954) pp. 315-326
Nexus externi |

|
Vicimedia Communia plura habent quae ad Durnovaria spectant.
|
- "Durno(no)varia" apud Pleiades (situs a Rogero Bagnall et Ricardo Talbert editus) .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice)
- "Durnovaria (Durotrigum)" apud www.roman-britain.org
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad urbem spectat. Amplifica, si potes!
|
jz57Yc,PwM,Xopd sashr016,tq bBcwH,6wZVHuem WT,xzEKMEkPpM94JDqrR EK6lgs,Xud7UZz
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...