Lingua naturalis

Multi tool use
Lingua naturalis, vel usitatus, solitus, sive cotidianus, in neuropsychologia, linguistica, et philosophia linguae, est ulla lingua quae in cerebris hominum inconsulte oritur. Usitate ergo, hae sunt linguae quibus homines utuntur ad se communicandos, num loquendo, gesticulando, tangendo, vel scribendo. A linguis artificiosis et formalibus, sicut illae ad computatra programmanda et ad logicam investigandam adhibitae, distinguuntur.[1]
Nexus interni
- Grammatica universalis
- Lingua artificiosa
- Lingua creola
- Taxinomia linguistica
Notae |
Bibliographia |
- Fernandes, Keith. 2008. On the Significance of Speech: How Infants Discover Symbols and Structure. Ann Arbor Michiganiae: ProQuest. ISBN 9781243524065.
- Lyons, John. 1991. Natural Language and Universal Grammar. Novi Eboraci: Cambridge University Press. ISBN 9780521246965.
- Musso, M., A. Moro, V. Glauche, M. Rijntjes, J. Reichenbach, C. Büchel, et C. Weiller. 2003. Broca's area and the language instinct. Nature Neuroscience 6:774–781.
- ter Meulen, Alice. 2001. Logic and Natural Language. In The Blackwell Guide to Philosophical Logic, ed. Lou Goble. Blackwell.
- Winograd, Terry. 1972. Understanding Natural Language. Novi Eboraci: Academic Press. ISBN 0127597506.
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad linguam vel ad linguisticam spectat. Amplifica, si potes!
|
cpQZLfgGqhikqvn8Kx8w,0K0pBBm pcKdqiHek7rY3S
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...