Grover's algorithm - DES circuit as oracle?





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







2












$begingroup$


In the literature before me, the quantum oracle of the Grover algorithm is shown as a function, in which a sign change is made possible $|xranglerightarrow(-1)^{f(x)}|xrangle$. I have read that it is possible to transform any efficient classical circuit into a quantum circuit.



My question, if I want to crack the DES encryption, is it possible to implement the DES algorithm as a circuit that acts as an oracle then? That's just a consideration. Is that conceivable? Could I find the key you are looking for? Is there perhaps some paper about it?



I would be very interested in what you think about it!










share|improve this question











$endgroup$



















    2












    $begingroup$


    In the literature before me, the quantum oracle of the Grover algorithm is shown as a function, in which a sign change is made possible $|xranglerightarrow(-1)^{f(x)}|xrangle$. I have read that it is possible to transform any efficient classical circuit into a quantum circuit.



    My question, if I want to crack the DES encryption, is it possible to implement the DES algorithm as a circuit that acts as an oracle then? That's just a consideration. Is that conceivable? Could I find the key you are looking for? Is there perhaps some paper about it?



    I would be very interested in what you think about it!










    share|improve this question











    $endgroup$















      2












      2








      2


      1



      $begingroup$


      In the literature before me, the quantum oracle of the Grover algorithm is shown as a function, in which a sign change is made possible $|xranglerightarrow(-1)^{f(x)}|xrangle$. I have read that it is possible to transform any efficient classical circuit into a quantum circuit.



      My question, if I want to crack the DES encryption, is it possible to implement the DES algorithm as a circuit that acts as an oracle then? That's just a consideration. Is that conceivable? Could I find the key you are looking for? Is there perhaps some paper about it?



      I would be very interested in what you think about it!










      share|improve this question











      $endgroup$




      In the literature before me, the quantum oracle of the Grover algorithm is shown as a function, in which a sign change is made possible $|xranglerightarrow(-1)^{f(x)}|xrangle$. I have read that it is possible to transform any efficient classical circuit into a quantum circuit.



      My question, if I want to crack the DES encryption, is it possible to implement the DES algorithm as a circuit that acts as an oracle then? That's just a consideration. Is that conceivable? Could I find the key you are looking for? Is there perhaps some paper about it?



      I would be very interested in what you think about it!







      algorithm grovers-algorithm cryptography






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 5 hours ago









      Sanchayan Dutta

      6,64141556




      6,64141556










      asked 6 hours ago









      QuantaMagQuantaMag

      1726




      1726






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          In principle it is possible to generate code for oracles such as the DES encryption (under fixed plaintext/ciphertext pairs, so that the search space becomes the set of all possible encryption keys). One (simple) way to do so is to apply the Bennett method to a classical, irreversible circuit and then to count the gates manually. There are better ways known that do not create as much memory overhead as Bennett's method. As far as programmatic support for this is concerned, there are several attempts for various ciphers and hash-functions to perform this cost analysis with the help of a computer:




          1. AES was analyzed (using C/C++ programs for resource counting and well known circuits for the underlying finite field arithmetic) in "Applying Grover's algorithm to AES: quantum resource estimates" by Grassl et al. Link to paper: https://arxiv.org/abs/1512.04965  

          2. MD5 and SHA-2 were analyzed (using prototypes such as REVS) in "Reversible circuit compilation with space constraints" by Parent et al. Note that technically not the entire encryption was implemented, but just one round function. In particular, no key scheduler. Link to paper: https://arxiv.org/abs/1510.00377

          3. SHA-2 and SHA-3 were analyzed (again using prototypes such as ReVer) in "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3" by Amy et al. Again, again not the entire encryption. Link to paper: https://arxiv.org/abs/1603.09383


          A general programmatic framework to express general oracles, synthesize them into quantum circuits, and perform cost analyses does not exist to the best of my knowledge.



          Finally, note that applying Grover to breaking ciphers and hash-functions does not lead to practical attacks on these schemes, at least not for real-world parameters choices (such as AES-128 or even DES-56). The reason is that despite the quadratic speedup that you get from Grover's algorithm, the problem to find the encryption key is still exponential. Furthermore, the requirement to implement the oracle reversible typically leads to large overheads in terms of qubits and gates, so the quadratic speedup is even less pronounced than one might expect (see e.g. the mentioned AES-128 case above where the gate count is not $2^{64}$ as one might expect from the square root speedup over a naïve solution, but worked out to be about $2^{86}$ in the first paper above).



          In other words, the whole point of applying Grover's algorithm (and other known quantum algorithm such as claw-finding etc.) to classical cryptographic schemes is not so much to carry out said attacks, but instead is assess their security parameters against quantum attacks.






          share|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "694"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5907%2fgrovers-algorithm-des-circuit-as-oracle%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            In principle it is possible to generate code for oracles such as the DES encryption (under fixed plaintext/ciphertext pairs, so that the search space becomes the set of all possible encryption keys). One (simple) way to do so is to apply the Bennett method to a classical, irreversible circuit and then to count the gates manually. There are better ways known that do not create as much memory overhead as Bennett's method. As far as programmatic support for this is concerned, there are several attempts for various ciphers and hash-functions to perform this cost analysis with the help of a computer:




            1. AES was analyzed (using C/C++ programs for resource counting and well known circuits for the underlying finite field arithmetic) in "Applying Grover's algorithm to AES: quantum resource estimates" by Grassl et al. Link to paper: https://arxiv.org/abs/1512.04965  

            2. MD5 and SHA-2 were analyzed (using prototypes such as REVS) in "Reversible circuit compilation with space constraints" by Parent et al. Note that technically not the entire encryption was implemented, but just one round function. In particular, no key scheduler. Link to paper: https://arxiv.org/abs/1510.00377

            3. SHA-2 and SHA-3 were analyzed (again using prototypes such as ReVer) in "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3" by Amy et al. Again, again not the entire encryption. Link to paper: https://arxiv.org/abs/1603.09383


            A general programmatic framework to express general oracles, synthesize them into quantum circuits, and perform cost analyses does not exist to the best of my knowledge.



            Finally, note that applying Grover to breaking ciphers and hash-functions does not lead to practical attacks on these schemes, at least not for real-world parameters choices (such as AES-128 or even DES-56). The reason is that despite the quadratic speedup that you get from Grover's algorithm, the problem to find the encryption key is still exponential. Furthermore, the requirement to implement the oracle reversible typically leads to large overheads in terms of qubits and gates, so the quadratic speedup is even less pronounced than one might expect (see e.g. the mentioned AES-128 case above where the gate count is not $2^{64}$ as one might expect from the square root speedup over a naïve solution, but worked out to be about $2^{86}$ in the first paper above).



            In other words, the whole point of applying Grover's algorithm (and other known quantum algorithm such as claw-finding etc.) to classical cryptographic schemes is not so much to carry out said attacks, but instead is assess their security parameters against quantum attacks.






            share|improve this answer









            $endgroup$


















              2












              $begingroup$

              In principle it is possible to generate code for oracles such as the DES encryption (under fixed plaintext/ciphertext pairs, so that the search space becomes the set of all possible encryption keys). One (simple) way to do so is to apply the Bennett method to a classical, irreversible circuit and then to count the gates manually. There are better ways known that do not create as much memory overhead as Bennett's method. As far as programmatic support for this is concerned, there are several attempts for various ciphers and hash-functions to perform this cost analysis with the help of a computer:




              1. AES was analyzed (using C/C++ programs for resource counting and well known circuits for the underlying finite field arithmetic) in "Applying Grover's algorithm to AES: quantum resource estimates" by Grassl et al. Link to paper: https://arxiv.org/abs/1512.04965  

              2. MD5 and SHA-2 were analyzed (using prototypes such as REVS) in "Reversible circuit compilation with space constraints" by Parent et al. Note that technically not the entire encryption was implemented, but just one round function. In particular, no key scheduler. Link to paper: https://arxiv.org/abs/1510.00377

              3. SHA-2 and SHA-3 were analyzed (again using prototypes such as ReVer) in "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3" by Amy et al. Again, again not the entire encryption. Link to paper: https://arxiv.org/abs/1603.09383


              A general programmatic framework to express general oracles, synthesize them into quantum circuits, and perform cost analyses does not exist to the best of my knowledge.



              Finally, note that applying Grover to breaking ciphers and hash-functions does not lead to practical attacks on these schemes, at least not for real-world parameters choices (such as AES-128 or even DES-56). The reason is that despite the quadratic speedup that you get from Grover's algorithm, the problem to find the encryption key is still exponential. Furthermore, the requirement to implement the oracle reversible typically leads to large overheads in terms of qubits and gates, so the quadratic speedup is even less pronounced than one might expect (see e.g. the mentioned AES-128 case above where the gate count is not $2^{64}$ as one might expect from the square root speedup over a naïve solution, but worked out to be about $2^{86}$ in the first paper above).



              In other words, the whole point of applying Grover's algorithm (and other known quantum algorithm such as claw-finding etc.) to classical cryptographic schemes is not so much to carry out said attacks, but instead is assess their security parameters against quantum attacks.






              share|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                In principle it is possible to generate code for oracles such as the DES encryption (under fixed plaintext/ciphertext pairs, so that the search space becomes the set of all possible encryption keys). One (simple) way to do so is to apply the Bennett method to a classical, irreversible circuit and then to count the gates manually. There are better ways known that do not create as much memory overhead as Bennett's method. As far as programmatic support for this is concerned, there are several attempts for various ciphers and hash-functions to perform this cost analysis with the help of a computer:




                1. AES was analyzed (using C/C++ programs for resource counting and well known circuits for the underlying finite field arithmetic) in "Applying Grover's algorithm to AES: quantum resource estimates" by Grassl et al. Link to paper: https://arxiv.org/abs/1512.04965  

                2. MD5 and SHA-2 were analyzed (using prototypes such as REVS) in "Reversible circuit compilation with space constraints" by Parent et al. Note that technically not the entire encryption was implemented, but just one round function. In particular, no key scheduler. Link to paper: https://arxiv.org/abs/1510.00377

                3. SHA-2 and SHA-3 were analyzed (again using prototypes such as ReVer) in "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3" by Amy et al. Again, again not the entire encryption. Link to paper: https://arxiv.org/abs/1603.09383


                A general programmatic framework to express general oracles, synthesize them into quantum circuits, and perform cost analyses does not exist to the best of my knowledge.



                Finally, note that applying Grover to breaking ciphers and hash-functions does not lead to practical attacks on these schemes, at least not for real-world parameters choices (such as AES-128 or even DES-56). The reason is that despite the quadratic speedup that you get from Grover's algorithm, the problem to find the encryption key is still exponential. Furthermore, the requirement to implement the oracle reversible typically leads to large overheads in terms of qubits and gates, so the quadratic speedup is even less pronounced than one might expect (see e.g. the mentioned AES-128 case above where the gate count is not $2^{64}$ as one might expect from the square root speedup over a naïve solution, but worked out to be about $2^{86}$ in the first paper above).



                In other words, the whole point of applying Grover's algorithm (and other known quantum algorithm such as claw-finding etc.) to classical cryptographic schemes is not so much to carry out said attacks, but instead is assess their security parameters against quantum attacks.






                share|improve this answer









                $endgroup$



                In principle it is possible to generate code for oracles such as the DES encryption (under fixed plaintext/ciphertext pairs, so that the search space becomes the set of all possible encryption keys). One (simple) way to do so is to apply the Bennett method to a classical, irreversible circuit and then to count the gates manually. There are better ways known that do not create as much memory overhead as Bennett's method. As far as programmatic support for this is concerned, there are several attempts for various ciphers and hash-functions to perform this cost analysis with the help of a computer:




                1. AES was analyzed (using C/C++ programs for resource counting and well known circuits for the underlying finite field arithmetic) in "Applying Grover's algorithm to AES: quantum resource estimates" by Grassl et al. Link to paper: https://arxiv.org/abs/1512.04965  

                2. MD5 and SHA-2 were analyzed (using prototypes such as REVS) in "Reversible circuit compilation with space constraints" by Parent et al. Note that technically not the entire encryption was implemented, but just one round function. In particular, no key scheduler. Link to paper: https://arxiv.org/abs/1510.00377

                3. SHA-2 and SHA-3 were analyzed (again using prototypes such as ReVer) in "Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3" by Amy et al. Again, again not the entire encryption. Link to paper: https://arxiv.org/abs/1603.09383


                A general programmatic framework to express general oracles, synthesize them into quantum circuits, and perform cost analyses does not exist to the best of my knowledge.



                Finally, note that applying Grover to breaking ciphers and hash-functions does not lead to practical attacks on these schemes, at least not for real-world parameters choices (such as AES-128 or even DES-56). The reason is that despite the quadratic speedup that you get from Grover's algorithm, the problem to find the encryption key is still exponential. Furthermore, the requirement to implement the oracle reversible typically leads to large overheads in terms of qubits and gates, so the quadratic speedup is even less pronounced than one might expect (see e.g. the mentioned AES-128 case above where the gate count is not $2^{64}$ as one might expect from the square root speedup over a naïve solution, but worked out to be about $2^{86}$ in the first paper above).



                In other words, the whole point of applying Grover's algorithm (and other known quantum algorithm such as claw-finding etc.) to classical cryptographic schemes is not so much to carry out said attacks, but instead is assess their security parameters against quantum attacks.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 1 hour ago









                MartinQuantumMartinQuantum

                46029




                46029






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Quantum Computing Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5907%2fgrovers-algorithm-des-circuit-as-oracle%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to label and detect the document text images

                    Tabula Rosettana

                    Aureus (color)