Simple question about prediction classes of item in question vs not item in question
$begingroup$
Let's say I wanted to use transfer learning to train a model to detect object A vs everything else. In this case, do I provide 2 types of input, images of object A and images of everything else, and then have the final layer of the model output either object A or not-object A?
What about in the case where I want object A vs object B vs everything else. Would it make sense in this case to provide images of A and B and then have only two output classes, but based on the confidence of the output, interpret it as 3 classes? Say that it's object A if the confidence in that is > 50%, object B if the confidence in that is > 50%, and anything else if neither of those two conditions are met?
machine-learning transfer-learning
$endgroup$
bumped to the homepage by Community♦ yesterday
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
$begingroup$
Let's say I wanted to use transfer learning to train a model to detect object A vs everything else. In this case, do I provide 2 types of input, images of object A and images of everything else, and then have the final layer of the model output either object A or not-object A?
What about in the case where I want object A vs object B vs everything else. Would it make sense in this case to provide images of A and B and then have only two output classes, but based on the confidence of the output, interpret it as 3 classes? Say that it's object A if the confidence in that is > 50%, object B if the confidence in that is > 50%, and anything else if neither of those two conditions are met?
machine-learning transfer-learning
$endgroup$
bumped to the homepage by Community♦ yesterday
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
$begingroup$
Let's say I wanted to use transfer learning to train a model to detect object A vs everything else. In this case, do I provide 2 types of input, images of object A and images of everything else, and then have the final layer of the model output either object A or not-object A?
What about in the case where I want object A vs object B vs everything else. Would it make sense in this case to provide images of A and B and then have only two output classes, but based on the confidence of the output, interpret it as 3 classes? Say that it's object A if the confidence in that is > 50%, object B if the confidence in that is > 50%, and anything else if neither of those two conditions are met?
machine-learning transfer-learning
$endgroup$
Let's say I wanted to use transfer learning to train a model to detect object A vs everything else. In this case, do I provide 2 types of input, images of object A and images of everything else, and then have the final layer of the model output either object A or not-object A?
What about in the case where I want object A vs object B vs everything else. Would it make sense in this case to provide images of A and B and then have only two output classes, but based on the confidence of the output, interpret it as 3 classes? Say that it's object A if the confidence in that is > 50%, object B if the confidence in that is > 50%, and anything else if neither of those two conditions are met?
machine-learning transfer-learning
machine-learning transfer-learning
asked Aug 14 '18 at 22:22
John AllardJohn Allard
1164
1164
bumped to the homepage by Community♦ yesterday
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
bumped to the homepage by Community♦ yesterday
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It depends if the percentages are required to sum to 100%. Typically when training on only 2 classes, the model will make predicts that sum to 100% for 2 classes. There will be no chance for out-of-class predictions.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f36944%2fsimple-question-about-prediction-classes-of-item-in-question-vs-not-item-in-ques%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It depends if the percentages are required to sum to 100%. Typically when training on only 2 classes, the model will make predicts that sum to 100% for 2 classes. There will be no chance for out-of-class predictions.
$endgroup$
add a comment |
$begingroup$
It depends if the percentages are required to sum to 100%. Typically when training on only 2 classes, the model will make predicts that sum to 100% for 2 classes. There will be no chance for out-of-class predictions.
$endgroup$
add a comment |
$begingroup$
It depends if the percentages are required to sum to 100%. Typically when training on only 2 classes, the model will make predicts that sum to 100% for 2 classes. There will be no chance for out-of-class predictions.
$endgroup$
It depends if the percentages are required to sum to 100%. Typically when training on only 2 classes, the model will make predicts that sum to 100% for 2 classes. There will be no chance for out-of-class predictions.
answered Aug 15 '18 at 3:11
Brian SpieringBrian Spiering
4,2681129
4,2681129
add a comment |
add a comment |
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f36944%2fsimple-question-about-prediction-classes-of-item-in-question-vs-not-item-in-ques%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown