Philippus V (rex Hispaniae)

Multi tool use

Philippus V (rex Hispaniae)
Res apud Vicidata repertae:
Nativitas:
19 Decembris 1683;
VersaliaeObitus:
9 Iulii 1746;
MatritumPatria:
Francia Borboniensis, Kingdom of Spain
Officium
Officium: Monarch of Spain, Governor-General of the Philippines, king of Majorca
Munus: ruler
Consociatio
Religio: Ecclesia Catholica Romana
Familia
Genitores: Louis, Grand Dauphin; Duchess Maria Anna Victoria of Bavaria
Coniunx: Maria Luisa of Savoy, Elisabeth Farnese
Proles: Ludovicus I, Ferdinandus VI, Carolus III, Mariana Victoria of Spain, Philip, Duke of Parma, Maria Teresa Rafaela of Spain, Infante Luis, Count of Chinchón, Maria Antonia Ferdinanda of Spain, Infante Philip Peter Gabriel of Spain, Philip Louis of Spain, Francesc de Borbó i Farnese
Familia: House of Bourbon
Memoria
Laurae: Knight of the Order of the Holy Spirit, Knight in the order of Saint-Michel, Knight of the Order of the Golden Fleece
Sepultura: Tomb of Philip V of Spain

Philippus V Hispaniae Rex
Philippus V Borbonis , Hispanice Felipe V de Borbón ( natus Versaliarum die 19 Decembris 1683 - Matriti obiit die 9 Iulii 1746) fuit rex Hispaniae - primus domi Borbonis - a die 15 Novembris 1700 usque ad mortem praeter brevem intervallum anno 1724 cum filio eius Ludovicus I septem menses regnavit.
Carolo II, ultimo Hispano rege Domi Habsburgicae, defuncto, regnum heredavit. In primis temporibus regni eius, bellum in Imperatoris filium duxit, quia unusquisque se hereditatem hispanicam habere putabat.
Nexus externi |
Pagina officialis Coronae Hispanicae (Hispanice)
Antecessor: Carolus II
|
Index Regum Hispaniae
|
Successor: Ludovicus I -
|
Antecessor: Ludovicus I
|
Index Regum Hispaniae
|
Successor: Ferdinandus VI -
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
Eo,NywaQOARFkWJp10A,Ai3nKTws Qu0SiD8ZQtI,Khb,ENlx6xpfp0
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...