Conches (districtus)

Multi tool use

Conches (districtus)
Res apud Vicidata repertae:
district of the canton of ValaisCivitas:
HelvetiaLocus:
46°27′0″N 8°18′0″E
Fines
Subdivisio superior: Valesia
Territoria finitima: Rarognus Orientalis (districtus), Briga, Rarognus Occidentalis
Forma
Area: 588.3 chiliometrum quadratum
Caput: Münster-Geschinen
Subdivisiones: Bellwald, Binn, Blitzingen, Ernen, Fiesch, Vallis de Vies, Grafschaft, Lax, Münster-Geschinen, Niederwald, Obergoms, Reckingen-Gluringen
Vita
Zona horaria: UTC+1, UTC+2
Sigla
Siglum autoraedarum: VS
Conches [1]( Germanice Bezirk Goms, Francice District de Conches ) est unus quattuordecim Valesiae pagi districtuum. In hoc districtu, a duodecim municipiis constituto, incolae Germanice loquuntur. Oppidum Monasterium-Geschinen est caput huius districtus, cui 4715 incolarum anno 2009 sunt.
Nexus externi |
- Commentatio Conches (districtus) in Lexico historico Helvetiae: Theodisce, Francogallice, Italice
Notae |
↑ Confer Commentatio Conches (districtus) in Lexico historico Helvetiae: Theodisce, Francogallice, Italice
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
Valesiae tredecim districtus
Acaunus |
Briga |
Conches |
Conthey |
Hérens |
Inter Montes |
Leuca Fortis |
Monthey |
Octodurus |
Rarognus Occidentalis |
Rarognus Orientalis |
Sirrus |
Sedunum |
Visp
92aJT2H,NaHd4HDg8EwIK06t67Y
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...