Isolation forest results every value -1
$begingroup$
I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix
).
import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))
Which gives out an output:
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])
So, what did I do wrong? If I didn't, why is the output like this?
python scikit-learn pandas outlier
$endgroup$
add a comment |
$begingroup$
I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix
).
import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))
Which gives out an output:
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])
So, what did I do wrong? If I didn't, why is the output like this?
python scikit-learn pandas outlier
$endgroup$
$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29
$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago
add a comment |
$begingroup$
I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix
).
import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))
Which gives out an output:
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])
So, what did I do wrong? If I didn't, why is the output like this?
python scikit-learn pandas outlier
$endgroup$
I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix
).
import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))
Which gives out an output:
array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])
So, what did I do wrong? If I didn't, why is the output like this?
python scikit-learn pandas outlier
python scikit-learn pandas outlier
edited Mar 19 '18 at 7:53
tuomastik
745418
745418
asked Mar 19 '18 at 2:53
RamRam
313
313
$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29
$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago
add a comment |
$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29
$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago
$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29
$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29
$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago
$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f29239%2fisolation-forest-results-every-value-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f29239%2fisolation-forest-results-every-value-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29
$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago