Isolation forest results every value -1












1












$begingroup$


I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix).



import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest

df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))


Which gives out an output:




array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])




So, what did I do wrong? If I didn't, why is the output like this?










share|improve this question











$endgroup$












  • $begingroup$
    What's your dataset?
    $endgroup$
    – Aditya
    Mar 19 '18 at 3:29










  • $begingroup$
    Just send your dataset here. I will try.
    $endgroup$
    – Shivanya
    2 days ago
















1












$begingroup$


I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix).



import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest

df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))


Which gives out an output:




array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])




So, what did I do wrong? If I didn't, why is the output like this?










share|improve this question











$endgroup$












  • $begingroup$
    What's your dataset?
    $endgroup$
    – Aditya
    Mar 19 '18 at 3:29










  • $begingroup$
    Just send your dataset here. I will try.
    $endgroup$
    – Shivanya
    2 days ago














1












1








1


0



$begingroup$


I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix).



import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest

df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))


Which gives out an output:




array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])




So, what did I do wrong? If I didn't, why is the output like this?










share|improve this question











$endgroup$




I am trying out isolation forest to detect outliers in a specific target column of my dataset. The dataset contains 188 rows of data with 178 rows with the same value for that target column and the isolation forest gives out every single value -1. Is that a bug or should I take it as that the values are fine? Here is a piece of the code. (I know I need to stop using ix).



import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest

df1 = pd.read_csv('C:/Users/smotapar/Desktop/ase/source/data.csv')
clf = IsolationForest(n_estimators=200, random_state=10, bootstrap=False)
clf.fit(df1.ix[:,"target"].values.reshape(-1, 1))
clf.predict(df1.ix[:,"target"].values.reshape(-1, 1))


Which gives out an output:




array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1])




So, what did I do wrong? If I didn't, why is the output like this?







python scikit-learn pandas outlier






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 19 '18 at 7:53









tuomastik

745418




745418










asked Mar 19 '18 at 2:53









RamRam

313




313












  • $begingroup$
    What's your dataset?
    $endgroup$
    – Aditya
    Mar 19 '18 at 3:29










  • $begingroup$
    Just send your dataset here. I will try.
    $endgroup$
    – Shivanya
    2 days ago


















  • $begingroup$
    What's your dataset?
    $endgroup$
    – Aditya
    Mar 19 '18 at 3:29










  • $begingroup$
    Just send your dataset here. I will try.
    $endgroup$
    – Shivanya
    2 days ago
















$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29




$begingroup$
What's your dataset?
$endgroup$
– Aditya
Mar 19 '18 at 3:29












$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago




$begingroup$
Just send your dataset here. I will try.
$endgroup$
– Shivanya
2 days ago










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f29239%2fisolation-forest-results-every-value-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f29239%2fisolation-forest-results-every-value-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to label and detect the document text images

Tabula Rosettana

Aureus (color)