Amur

Multi tool use
Amur

|
Longitudo
|
2824 km
|
Altitudo principii
|
304 m
|
Moles decussis
|
in ostio 12 800 m³/s
|
Area ex qua aqua affluit
|
1 855 000 km²
|
Principium
|
Confluxus Schilcae et Arguni
|
Ostium
|
Mare Ochotense
|
Regio
|
Oriens Extremus
|
Amur[1] sive Amura[2] (Russice Амур; Sinice 黑龙江, Hēilóng Jiāng, i.e. 'flumen draconis nigri') est flumen in Asia, in Foederatione Russica et Re Publica Populari Sinarum.

Tabula geographica pelvis siccantis fluvii Amur
"Ex coniunctione Schilcae et Arguni Amur fluvius oritur"[3], 2824 chiliometra patet et in mare Ochotense oceani Pacifici se effundit.
Notae |
↑ Atlas Russicus, Petropoli, 1745, p.7; Caroli Egger Lexicon Nominum Locorum: Supplementum referens nomina Latina vulgaria, Vaticani, 1985, p. 28.
↑ "l'Amur, en lat. Amura, dans la Tartarie Chinoise" (Ioannis Hubner De L'Asie. De L'Afrique. De L'Amérique & Des Pais Inconnus, tomus IV., Basileae, 1761, p. 5 apud Google Books)
↑ Ioannis Georgii Gmelin Flora Sibiriae sive historia plantarum Sibiriae, tomus I., Petropoli, 1747, p. XIV
Nexus externi |

|
Vicimedia Communia plura habent quae ad Amurem fluvium spectant.
|
Pagina de Amur fluvio Encyclopaediae Sovieticae Magnae editionis tertiae .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Russice)
Pagina de Amur fluvio Encyclopaediae Russicae Magnae
(Russice)
T 8gO,ZT2 jA MdImqfM084BixaIqpElUwPKFaevB5,Xz4pNbsfhrle39xaPiYU,lFTlHR hS,wmwnwm
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...