Do I need to encode the target variable for sklearn logistic regression
$begingroup$
I'm trying to get familiar with the sklearn library, and now I'm trying to implement logistic regression for a dataframe containing numerical and categorical values to predict a binary target variable.
While reading some documentation I found the logistic regression should be used to predict binary variables presented by 0 and 1.
My target variable is "YES" and "NO", should I code it to 0 and 1 for the algorithm to work properly, or there is no difference?
Maybe I just didn't get the idea but can someone confirm this to me.
scikit-learn logistic-regression
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to get familiar with the sklearn library, and now I'm trying to implement logistic regression for a dataframe containing numerical and categorical values to predict a binary target variable.
While reading some documentation I found the logistic regression should be used to predict binary variables presented by 0 and 1.
My target variable is "YES" and "NO", should I code it to 0 and 1 for the algorithm to work properly, or there is no difference?
Maybe I just didn't get the idea but can someone confirm this to me.
scikit-learn logistic-regression
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to get familiar with the sklearn library, and now I'm trying to implement logistic regression for a dataframe containing numerical and categorical values to predict a binary target variable.
While reading some documentation I found the logistic regression should be used to predict binary variables presented by 0 and 1.
My target variable is "YES" and "NO", should I code it to 0 and 1 for the algorithm to work properly, or there is no difference?
Maybe I just didn't get the idea but can someone confirm this to me.
scikit-learn logistic-regression
New contributor
$endgroup$
I'm trying to get familiar with the sklearn library, and now I'm trying to implement logistic regression for a dataframe containing numerical and categorical values to predict a binary target variable.
While reading some documentation I found the logistic regression should be used to predict binary variables presented by 0 and 1.
My target variable is "YES" and "NO", should I code it to 0 and 1 for the algorithm to work properly, or there is no difference?
Maybe I just didn't get the idea but can someone confirm this to me.
scikit-learn logistic-regression
scikit-learn logistic-regression
New contributor
New contributor
New contributor
asked 2 days ago
GreenGreen
84
84
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The string labels work just fine, here is an example:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
import numpy
X, y = load_iris(return_X_y=True)
y_string = numpy.array(['YES' if label == 1 else 'NO' for label in y])
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y_string)
y_pred = clf.predict(X[50:100, :])
print(y_pred)
Output:
['NO' 'NO' 'NO' 'YES' 'NO' 'YES' 'NO' 'YES' 'NO' 'NO' 'YES' 'NO' 'YES'
'NO' 'NO' 'NO' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'YES' 'YES' 'NO' 'NO'
'YES' 'NO' 'NO' 'YES' 'YES' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO'
'YES' 'YES' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO']
Yo can replace y_string
to y
for the numerical example.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Green is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47248%2fdo-i-need-to-encode-the-target-variable-for-sklearn-logistic-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The string labels work just fine, here is an example:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
import numpy
X, y = load_iris(return_X_y=True)
y_string = numpy.array(['YES' if label == 1 else 'NO' for label in y])
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y_string)
y_pred = clf.predict(X[50:100, :])
print(y_pred)
Output:
['NO' 'NO' 'NO' 'YES' 'NO' 'YES' 'NO' 'YES' 'NO' 'NO' 'YES' 'NO' 'YES'
'NO' 'NO' 'NO' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'YES' 'YES' 'NO' 'NO'
'YES' 'NO' 'NO' 'YES' 'YES' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO'
'YES' 'YES' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO']
Yo can replace y_string
to y
for the numerical example.
$endgroup$
add a comment |
$begingroup$
The string labels work just fine, here is an example:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
import numpy
X, y = load_iris(return_X_y=True)
y_string = numpy.array(['YES' if label == 1 else 'NO' for label in y])
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y_string)
y_pred = clf.predict(X[50:100, :])
print(y_pred)
Output:
['NO' 'NO' 'NO' 'YES' 'NO' 'YES' 'NO' 'YES' 'NO' 'NO' 'YES' 'NO' 'YES'
'NO' 'NO' 'NO' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'YES' 'YES' 'NO' 'NO'
'YES' 'NO' 'NO' 'YES' 'YES' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO'
'YES' 'YES' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO']
Yo can replace y_string
to y
for the numerical example.
$endgroup$
add a comment |
$begingroup$
The string labels work just fine, here is an example:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
import numpy
X, y = load_iris(return_X_y=True)
y_string = numpy.array(['YES' if label == 1 else 'NO' for label in y])
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y_string)
y_pred = clf.predict(X[50:100, :])
print(y_pred)
Output:
['NO' 'NO' 'NO' 'YES' 'NO' 'YES' 'NO' 'YES' 'NO' 'NO' 'YES' 'NO' 'YES'
'NO' 'NO' 'NO' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'YES' 'YES' 'NO' 'NO'
'YES' 'NO' 'NO' 'YES' 'YES' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO'
'YES' 'YES' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO']
Yo can replace y_string
to y
for the numerical example.
$endgroup$
The string labels work just fine, here is an example:
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
import numpy
X, y = load_iris(return_X_y=True)
y_string = numpy.array(['YES' if label == 1 else 'NO' for label in y])
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y_string)
y_pred = clf.predict(X[50:100, :])
print(y_pred)
Output:
['NO' 'NO' 'NO' 'YES' 'NO' 'YES' 'NO' 'YES' 'NO' 'NO' 'YES' 'NO' 'YES'
'NO' 'NO' 'NO' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'YES' 'YES' 'NO' 'NO'
'YES' 'NO' 'NO' 'YES' 'YES' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO'
'YES' 'YES' 'NO' 'YES' 'YES' 'YES' 'NO' 'NO' 'NO' 'YES' 'NO']
Yo can replace y_string
to y
for the numerical example.
answered 2 days ago
EsmailianEsmailian
1,096112
1,096112
add a comment |
add a comment |
Green is a new contributor. Be nice, and check out our Code of Conduct.
Green is a new contributor. Be nice, and check out our Code of Conduct.
Green is a new contributor. Be nice, and check out our Code of Conduct.
Green is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f47248%2fdo-i-need-to-encode-the-target-variable-for-sklearn-logistic-regression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown