Definition A.3.1.5 of Higher Topos Theory
$begingroup$
I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.
So, what does a model structure on a $mathbf{S}$-enriched category mean?
Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?
higher-category-theory model-categories
New contributor
$endgroup$
add a comment |
$begingroup$
I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.
So, what does a model structure on a $mathbf{S}$-enriched category mean?
Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?
higher-category-theory model-categories
New contributor
$endgroup$
$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
10 hours ago
add a comment |
$begingroup$
I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.
So, what does a model structure on a $mathbf{S}$-enriched category mean?
Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?
higher-category-theory model-categories
New contributor
$endgroup$
I am now reading the book Higher Topos Theory. In A.3.1.5, it gives the definition
of a $mathbf{S}$-enriched model category, where $mathbf{S}$ is a monoidal model category. But in the book model structures are introduced only on $mathsf{Set}$-enriched categories.
So, what does a model structure on a $mathbf{S}$-enriched category mean?
Is it supposed to be that $mathbf{S}$ obtains a forgetful functor to $mathsf{Set}$, and the model structure is defined on the category with respect to the $mathsf{Set}$ enrichment, or is it something else?
higher-category-theory model-categories
higher-category-theory model-categories
New contributor
New contributor
edited 10 hours ago
Francesco Polizzi
48.1k3128209
48.1k3128209
New contributor
asked 10 hours ago
Frank KongFrank Kong
385
385
New contributor
New contributor
$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
10 hours ago
add a comment |
$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
10 hours ago
$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
10 hours ago
$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
10 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$
You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.
Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.
$endgroup$
1
$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
8 hours ago
$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
7 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325158%2fdefinition-a-3-1-5-of-higher-topos-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$
You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.
Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.
$endgroup$
1
$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
8 hours ago
$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
7 hours ago
add a comment |
$begingroup$
Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$
You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.
Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.
$endgroup$
1
$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
8 hours ago
$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
7 hours ago
add a comment |
$begingroup$
Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$
You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.
Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.
$endgroup$
Your guess is correct, indeed. In general, given any monoidal category $(mathbf V, otimes, 1)$, and any $mathbf V$-enriched category $mathbf C$, one can always consider the underlying category $mathbf C_0$ as the ($mathbf{Set}$-)category having as objects the same objects as $mathbf C$, and as hom-sets
$$
mathbf C_0(x,y):= mathbf V(1,mathbf{Hom}_{mathbf C}(x,y))
$$
You can easily work out how to define composition, after checking that $mathbf V(1,-)$ is a lax monoidal functor, as pointed out by Denis in the comments.
Now, if $mathbf S$ is a monoidal model category, and $mathbf A$ is a $mathbf S$-enriched category, "equipping $mathbf A$ with a model structure" just means "equipping $mathbf A_0$ with a model structure", whereas to talk about a $mathbf S$-enriched model category one requires the two extra conditions spelled out in HTT A.3.1.5.
answered 10 hours ago
Stefano AriottaStefano Ariotta
32148
32148
1
$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
8 hours ago
$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
7 hours ago
add a comment |
1
$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
8 hours ago
$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
7 hours ago
1
1
$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
8 hours ago
$begingroup$
Now I'm worried about Mike Shulman's question mathoverflow.net/questions/322917.
$endgroup$
– Theo Johnson-Freyd
8 hours ago
$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
7 hours ago
$begingroup$
Thanks for your help!
$endgroup$
– Frank Kong
7 hours ago
add a comment |
Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.
Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.
Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.
Frank Kong is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f325158%2fdefinition-a-3-1-5-of-higher-topos-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I suspect Lurie is using implicitly the lax monoidal forgetful functor $mathrm{Hom}_{mathbf{S}}(1_{mathbf{S}},-):mathbf{S}→mathrm{Set}$, although I'll confess I never really thought about it (but this gives the sensible choice of forgetful functor for both simplicial sets and chain complexes).
$endgroup$
– Denis Nardin
10 hours ago