Cornu

Multi tool use
Vide etiam paginam discretivam: Cornu (discretiva)

Cornu ut instrumentum musicum

Cornua lyrae (lyra ad dextram)
Cornu[1] est rigida acutaque prominentia ossea aut ceratinea, quae ex capite bestiarum aliquarum, praesertim artiodactylorum, consurgit. Alia cornigera, sicut rhinoceros unicornis, cornu unum habent, alia bicornia sunt. Praeterea, in capite nonnullorum reptilium, inter quae Bitis cornuta, sunt vera cornua parvula, et olim quidem dinosauriorum herbivororum multorum. In mythologia unicornis unum rectum et admodum longum cornu habet.
Sensu latiore cornu res (1.) similes forma, (2.) ex cornu factas significat, sicut
- per metaphoram: alam exercitus,[2] lunam crescentem,[3] ramos fluviales,[4] flexum litoris portum ligulamve facientem,[5] conum galeae in quo cristae positae erant,[6] summum montem,[7] dentes elephantorum,[8] antennam insecti,[9] verrucam capitis,[10] etc.
- per metonymiam: membranam oculi,[11] ungulam,[12] rostrum aviarium,[13] arcum,[14] instrumentum inflatile,[15][16] latera lyrae,[17] lecythum olei,[18] infundibulum,[19] etc.
Notae |
↑ Cornu (-us, n.) apud omnes fere auctores; cornum forma additicia in nominativo/accusativo singulari invenitur, sicut Ov. Met. 2.874 [alibi cornu]; Col. Rust. 6.2.7 per cornum [sed per cornu quinquies]; etc.
↑ Caes. Gall. 1.52 et alibi; Liv. 9.40.3 et alibi
↑ Verg. Georg. 1.433; Ov. Met. 1.11; 2.117
↑ Ov. Met. 9.774. Unde fit, ut di fluviales sicut Achelous (Ov. Am. 3.6.35; Stat. Theb. 7.416) et Eridanus (Verg. Georg. 4.371) cornigeri depingerentur.
↑ Cic. Att. 9.14.1; Ov. Met. 5.410
↑ Verg. Aen. 12.89; Liv. 27.33.2)
↑ Stat. Theb. 5.532; Curt. 3.4.4
↑ Varro, Lat. 7.39; Plin. Nat. 18.2
↑ Plin. Nat. 9.95 et alibi,
↑ Hor. Sat. 1.5.58
↑ Plin. Nat. 11.148
↑ Cato, Agr. 72; Verg. Georg. 3.88
↑ Ov. Met. 14.502
↑ Verg. Buc. 10.59; Ov. Met. 5.383
↑ Lucr. 2.620; Verg. Aen. 7.615; Ov. Met. 1.98; 3.533; Hor. Carm. 1.18.14; 2.1.17
↑ Varro, Lat. 5.117 "cornua, quod ea, quae nunc sunt ex aere, tunc fiebant bubulo e cornu.
↑ Cic. N.D. 2.57.144; 2.59.149
↑ Hor. Sat. 2.2.61
↑ Verg. Georg. 3.509; Col. Rust. 6.2.7
Nexus externi |

|
Vicimedia Communia plura habent quae ad cornua spectant.
|
i HaoUe1FCQLCbncsKp1MPz5wKR4nIZwWmqdF07ZKV8BgdO5od2d9K4QimDvsd BWvZo9vVfpnDDiqzAAKLogaoBRYlmKi,rt13go
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...