Mons Crucis

Multi tool use
Insigne
|
Tabula geographica
|
 1956 - 2001
|

|
Indicia fundamentalia
|
Terra Foederalis Germaniae: |
Berolinum
|
Regio: |
Lucus Fridericianus et Mons Crucis
|
Numerus incolarum: |
147 603
|
Coordinata geographica: |
52° 30′ 0″ Sept., 13° 24′ 0″ Ort.
|
Praefixum telephonicum: |
030
|
Nota autocineti: |
B
|
Kreuzberg, quod Latine Mons Crucis, Kreuzberga sive Crucimontium reddatur, est pars urbis in regione Lucu Fridericiano et Monte Crucis Berolini. Antequam reformatione rerum administrativarum anno 2001 facta Mons Crucis coniunctus est cum regione nomine Lucu Fridericiano, regio sui iuris fuit in parte urbis quae occidentem solem spectat.
Alia pars regionis "Lucus Fridericiani et Montis Crucis" est Lucus Fridericianus, quae regio trans flumen Spreham sita est.
Olim Montis Crucis regio erat divisa in duos districtus publici cursus "SO36" et "SW61". SO dicit Südost seu "australis et orientalis" et SW dicit Südwest seu "australis et occidentalis". Districtus SO36 est violenta regio ubi autocineta Die Laboris cumburebantur, cum SW61 fuerit regio nobilior.
Commeatus |
Montem Crucis transcurrunt lineae 1 et 6 ferriviae metropolitanae. Linea 1 cum statione Gorlicensi hic est ferrivia elevata.
Latinalia |
In medicamentarii taberna signum: "CONDITUM: AoMDCCCXCII . . . DIRUTUM: AoMCMXLV . . . RESTITUTUM: AoMCMLIV"
"Nunc est bibendum" in via Vindobonensi vulgo Wiener Straße
Alia coepta Vici |

|
Vicimedia Communia plura habent quae ad Montem Crucis spectant.
|
3FFJQcT,8PZi,l0zZQXFd,EO0u5Iw9Vn6 QaJOP0w7kkvIIxuZOl9LXhT9katwWY8IT,xaHFcTYIlJaLS64Qd13s
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...