Limit involving inverse functions
$begingroup$
When I am given the limit
$$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$
would it be possible to evaluate it giving some substitution?
L'Hospital's rule seemed an option but I ended up going in circles.
calculus limits inverse-function
$endgroup$
add a comment |
$begingroup$
When I am given the limit
$$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$
would it be possible to evaluate it giving some substitution?
L'Hospital's rule seemed an option but I ended up going in circles.
calculus limits inverse-function
$endgroup$
add a comment |
$begingroup$
When I am given the limit
$$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$
would it be possible to evaluate it giving some substitution?
L'Hospital's rule seemed an option but I ended up going in circles.
calculus limits inverse-function
$endgroup$
When I am given the limit
$$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$
would it be possible to evaluate it giving some substitution?
L'Hospital's rule seemed an option but I ended up going in circles.
calculus limits inverse-function
calculus limits inverse-function
edited 14 hours ago
Michael Rybkin
2,593316
2,593316
asked 14 hours ago
MadCapMadCap
413
413
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:
$$
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
$$
$endgroup$
add a comment |
$begingroup$
You may proceed as follows:
- Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$
begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
& = & sqrt{tan^2y -1}frac{y}{tan y} \
& = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
&stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.
Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3118910%2flimit-involving-inverse-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:
$$
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
$$
$endgroup$
add a comment |
$begingroup$
When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:
$$
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
$$
$endgroup$
add a comment |
$begingroup$
When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:
$$
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
$$
$endgroup$
When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:
$$
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
$$
edited 10 hours ago
answered 14 hours ago
Michael RybkinMichael Rybkin
2,593316
2,593316
add a comment |
add a comment |
$begingroup$
You may proceed as follows:
- Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$
begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
& = & sqrt{tan^2y -1}frac{y}{tan y} \
& = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
&stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may proceed as follows:
- Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$
begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
& = & sqrt{tan^2y -1}frac{y}{tan y} \
& = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
&stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may proceed as follows:
- Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$
begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
& = & sqrt{tan^2y -1}frac{y}{tan y} \
& = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
&stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
end{eqnarray*}
$endgroup$
You may proceed as follows:
- Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$
begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
& = & sqrt{tan^2y -1}frac{y}{tan y} \
& = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
&stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
end{eqnarray*}
answered 13 hours ago
trancelocationtrancelocation
11.9k1825
11.9k1825
add a comment |
add a comment |
$begingroup$
Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.
Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.
$endgroup$
add a comment |
$begingroup$
Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.
Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.
$endgroup$
add a comment |
$begingroup$
Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.
Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.
$endgroup$
Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.
Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.
answered 6 hours ago
MPWMPW
30.1k12057
30.1k12057
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3118910%2flimit-involving-inverse-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown