ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array...
$begingroup$
I am trying to train the model, I keep ending up with this ValueError:
ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)
How can I fix this? Should I use numpy.resize
or cv2.resize
to change the dimensions to (3,150,150). If so, how would I resize it in the generator?
Here is my code:
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2)
test_datagen = ImageDataGenerator(rescale=1./255)
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
batch_size = 64
# this is a generator that will read pictures found in
# subfolers of 'data/train', and indefinitely generate
# batches of augmented image data
train_generator = train_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
target_size=(150, 150), # all images will be resized to 150x150
batch_size=batch_size,
color_mode='rgb',
class_mode='binary') # since we use binary_crossentropy loss, we need binary labels
# this is a similar generator, for validation data
validation_generator = test_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\val',
target_size=(150, 150),
batch_size=batch_size,
color_mode='rgb',
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=50,
validation_data=validation_generator,
validation_steps=800 // batch_size)
model.save_weights('first_try.h5')
neural-network keras dataset neural
New contributor
$endgroup$
add a comment |
$begingroup$
I am trying to train the model, I keep ending up with this ValueError:
ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)
How can I fix this? Should I use numpy.resize
or cv2.resize
to change the dimensions to (3,150,150). If so, how would I resize it in the generator?
Here is my code:
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2)
test_datagen = ImageDataGenerator(rescale=1./255)
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
batch_size = 64
# this is a generator that will read pictures found in
# subfolers of 'data/train', and indefinitely generate
# batches of augmented image data
train_generator = train_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
target_size=(150, 150), # all images will be resized to 150x150
batch_size=batch_size,
color_mode='rgb',
class_mode='binary') # since we use binary_crossentropy loss, we need binary labels
# this is a similar generator, for validation data
validation_generator = test_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\val',
target_size=(150, 150),
batch_size=batch_size,
color_mode='rgb',
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=50,
validation_data=validation_generator,
validation_steps=800 // batch_size)
model.save_weights('first_try.h5')
neural-network keras dataset neural
New contributor
$endgroup$
add a comment |
$begingroup$
I am trying to train the model, I keep ending up with this ValueError:
ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)
How can I fix this? Should I use numpy.resize
or cv2.resize
to change the dimensions to (3,150,150). If so, how would I resize it in the generator?
Here is my code:
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2)
test_datagen = ImageDataGenerator(rescale=1./255)
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
batch_size = 64
# this is a generator that will read pictures found in
# subfolers of 'data/train', and indefinitely generate
# batches of augmented image data
train_generator = train_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
target_size=(150, 150), # all images will be resized to 150x150
batch_size=batch_size,
color_mode='rgb',
class_mode='binary') # since we use binary_crossentropy loss, we need binary labels
# this is a similar generator, for validation data
validation_generator = test_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\val',
target_size=(150, 150),
batch_size=batch_size,
color_mode='rgb',
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=50,
validation_data=validation_generator,
validation_steps=800 // batch_size)
model.save_weights('first_try.h5')
neural-network keras dataset neural
New contributor
$endgroup$
I am trying to train the model, I keep ending up with this ValueError:
ValueError: Error when checking input: expected conv2d_13_input to have shape (3, 150, 150) but got array with shape (150, 150, 3)
How can I fix this? Should I use numpy.resize
or cv2.resize
to change the dimensions to (3,150,150). If so, how would I resize it in the generator?
Here is my code:
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2)
test_datagen = ImageDataGenerator(rescale=1./255)
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(32, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(64, (3, 3),padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
batch_size = 64
# this is a generator that will read pictures found in
# subfolers of 'data/train', and indefinitely generate
# batches of augmented image data
train_generator = train_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\train', # this is the target directory
target_size=(150, 150), # all images will be resized to 150x150
batch_size=batch_size,
color_mode='rgb',
class_mode='binary') # since we use binary_crossentropy loss, we need binary labels
# this is a similar generator, for validation data
validation_generator = test_datagen.flow_from_directory(
'C:\Users\Zahid\Desktop\Dataset\val',
target_size=(150, 150),
batch_size=batch_size,
color_mode='rgb',
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=2000 // batch_size,
epochs=50,
validation_data=validation_generator,
validation_steps=800 // batch_size)
model.save_weights('first_try.h5')
neural-network keras dataset neural
neural-network keras dataset neural
New contributor
New contributor
edited 13 hours ago
Stephen Rauch
1,52551330
1,52551330
New contributor
asked 18 hours ago
Zahid AhmedZahid Ahmed
11
11
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Change this:
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
to this:
model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))
And read the doc: https://keras.io/layers/convolutional/#conv2d
In particular the section about data_format:
data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
$endgroup$
$begingroup$
Thank you so much :)
$endgroup$
– Zahid Ahmed
18 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48731%2fvalueerror-error-when-checking-input-expected-conv2d-13-input-to-have-shape-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Change this:
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
to this:
model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))
And read the doc: https://keras.io/layers/convolutional/#conv2d
In particular the section about data_format:
data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
$endgroup$
$begingroup$
Thank you so much :)
$endgroup$
– Zahid Ahmed
18 hours ago
add a comment |
$begingroup$
Change this:
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
to this:
model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))
And read the doc: https://keras.io/layers/convolutional/#conv2d
In particular the section about data_format:
data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
$endgroup$
$begingroup$
Thank you so much :)
$endgroup$
– Zahid Ahmed
18 hours ago
add a comment |
$begingroup$
Change this:
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
to this:
model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))
And read the doc: https://keras.io/layers/convolutional/#conv2d
In particular the section about data_format:
data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
$endgroup$
Change this:
model.add(Conv2D(32, (3, 3), input_shape=(3, 150, 150),padding='same'))
to this:
model.add(Conv2D(32, (3, 3), input_shape=(150, 150, 3),padding='same'))
And read the doc: https://keras.io/layers/convolutional/#conv2d
In particular the section about data_format:
data_format: A string, one of "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch, height, width, channels) while "channels_first" corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
answered 18 hours ago
qmeeusqmeeus
19118
19118
$begingroup$
Thank you so much :)
$endgroup$
– Zahid Ahmed
18 hours ago
add a comment |
$begingroup$
Thank you so much :)
$endgroup$
– Zahid Ahmed
18 hours ago
$begingroup$
Thank you so much :)
$endgroup$
– Zahid Ahmed
18 hours ago
$begingroup$
Thank you so much :)
$endgroup$
– Zahid Ahmed
18 hours ago
add a comment |
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Zahid Ahmed is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48731%2fvalueerror-error-when-checking-input-expected-conv2d-13-input-to-have-shape-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown