Using good method to produce a regular matrix












1












$begingroup$


The matrixform is as follow, and how can I use good method to produce it?enter image description here










share|improve this question







New contributor




KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    If the picture can't show,then here is the matrixform:H={{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}
    $endgroup$
    – KarryMa
    16 hours ago












  • $begingroup$
    KroneckerProduct[ MapThread[ ReplacePart[#1, #2 -> 0] &, {ConstantArray[1, {3, 3}], RotateRight[Range[3]]}], {{1}, {2}} ]
    $endgroup$
    – Henrik Schumacher
    15 hours ago












  • $begingroup$
    Great,thank you very much!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    Or Normal@KroneckerProduct[ SparseArray[{Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{3, 1}] -> 1}, {3, 3}], {{1}, {2}} ].
    $endgroup$
    – Henrik Schumacher
    15 hours ago






  • 3




    $begingroup$
    Transpose@KroneckerProduct[Permutations[{1, 0, 1}], {1, 2}]
    $endgroup$
    – LouisB
    15 hours ago
















1












$begingroup$


The matrixform is as follow, and how can I use good method to produce it?enter image description here










share|improve this question







New contributor




KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    If the picture can't show,then here is the matrixform:H={{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}
    $endgroup$
    – KarryMa
    16 hours ago












  • $begingroup$
    KroneckerProduct[ MapThread[ ReplacePart[#1, #2 -> 0] &, {ConstantArray[1, {3, 3}], RotateRight[Range[3]]}], {{1}, {2}} ]
    $endgroup$
    – Henrik Schumacher
    15 hours ago












  • $begingroup$
    Great,thank you very much!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    Or Normal@KroneckerProduct[ SparseArray[{Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{3, 1}] -> 1}, {3, 3}], {{1}, {2}} ].
    $endgroup$
    – Henrik Schumacher
    15 hours ago






  • 3




    $begingroup$
    Transpose@KroneckerProduct[Permutations[{1, 0, 1}], {1, 2}]
    $endgroup$
    – LouisB
    15 hours ago














1












1








1





$begingroup$


The matrixform is as follow, and how can I use good method to produce it?enter image description here










share|improve this question







New contributor




KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




The matrixform is as follow, and how can I use good method to produce it?enter image description here







matrix






share|improve this question







New contributor




KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 16 hours ago









KarryMaKarryMa

112




112




New contributor




KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






KarryMa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    If the picture can't show,then here is the matrixform:H={{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}
    $endgroup$
    – KarryMa
    16 hours ago












  • $begingroup$
    KroneckerProduct[ MapThread[ ReplacePart[#1, #2 -> 0] &, {ConstantArray[1, {3, 3}], RotateRight[Range[3]]}], {{1}, {2}} ]
    $endgroup$
    – Henrik Schumacher
    15 hours ago












  • $begingroup$
    Great,thank you very much!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    Or Normal@KroneckerProduct[ SparseArray[{Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{3, 1}] -> 1}, {3, 3}], {{1}, {2}} ].
    $endgroup$
    – Henrik Schumacher
    15 hours ago






  • 3




    $begingroup$
    Transpose@KroneckerProduct[Permutations[{1, 0, 1}], {1, 2}]
    $endgroup$
    – LouisB
    15 hours ago


















  • $begingroup$
    If the picture can't show,then here is the matrixform:H={{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}
    $endgroup$
    – KarryMa
    16 hours ago












  • $begingroup$
    KroneckerProduct[ MapThread[ ReplacePart[#1, #2 -> 0] &, {ConstantArray[1, {3, 3}], RotateRight[Range[3]]}], {{1}, {2}} ]
    $endgroup$
    – Henrik Schumacher
    15 hours ago












  • $begingroup$
    Great,thank you very much!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    Or Normal@KroneckerProduct[ SparseArray[{Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{3, 1}] -> 1}, {3, 3}], {{1}, {2}} ].
    $endgroup$
    – Henrik Schumacher
    15 hours ago






  • 3




    $begingroup$
    Transpose@KroneckerProduct[Permutations[{1, 0, 1}], {1, 2}]
    $endgroup$
    – LouisB
    15 hours ago
















$begingroup$
If the picture can't show,then here is the matrixform:H={{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}
$endgroup$
– KarryMa
16 hours ago






$begingroup$
If the picture can't show,then here is the matrixform:H={{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}
$endgroup$
– KarryMa
16 hours ago














$begingroup$
KroneckerProduct[ MapThread[ ReplacePart[#1, #2 -> 0] &, {ConstantArray[1, {3, 3}], RotateRight[Range[3]]}], {{1}, {2}} ]
$endgroup$
– Henrik Schumacher
15 hours ago






$begingroup$
KroneckerProduct[ MapThread[ ReplacePart[#1, #2 -> 0] &, {ConstantArray[1, {3, 3}], RotateRight[Range[3]]}], {{1}, {2}} ]
$endgroup$
– Henrik Schumacher
15 hours ago














$begingroup$
Great,thank you very much!
$endgroup$
– KarryMa
15 hours ago




$begingroup$
Great,thank you very much!
$endgroup$
– KarryMa
15 hours ago












$begingroup$
Or Normal@KroneckerProduct[ SparseArray[{Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{3, 1}] -> 1}, {3, 3}], {{1}, {2}} ].
$endgroup$
– Henrik Schumacher
15 hours ago




$begingroup$
Or Normal@KroneckerProduct[ SparseArray[{Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{3, 1}] -> 1}, {3, 3}], {{1}, {2}} ].
$endgroup$
– Henrik Schumacher
15 hours ago




3




3




$begingroup$
Transpose@KroneckerProduct[Permutations[{1, 0, 1}], {1, 2}]
$endgroup$
– LouisB
15 hours ago




$begingroup$
Transpose@KroneckerProduct[Permutations[{1, 0, 1}], {1, 2}]
$endgroup$
– LouisB
15 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

IntegerDigits[{12,24,4,8,10,20},3,3]  



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}




also..



s = Transpose[Permutations /@ {{1, 1, 0}, {2, 2, 0}}];
Flatten[{{s[[1]]},Reverse@Rest@s},2]



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}







share|improve this answer











$endgroup$









  • 2




    $begingroup$
    I like the answer,thanks!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    @KarryMa Alternatively to PadLeft you can add 3 as 3rd argument IntegerDigits[{12, 24, 4, 8, 10, 20}, 3, 3].
    $endgroup$
    – Coolwater
    10 hours ago










  • $begingroup$
    yes, you are so right!
    $endgroup$
    – J42161217
    10 hours ago



















0












$begingroup$

A nice tool for this job is ArrayFlatten[ ]



a = {{1}, {2}}


$left(
begin{array}{c}
1 \
2 \
end{array}
right)$



Not sure why your rows are ordered the way they are. Are you trying to have a non-zero diagonal?



{{a,a,0},{0,a,a},{a,0,a}}// ArrayFlatten


$left(
begin{array}{ccc}
1 & 1 & 0 \
2 & 2 & 0 \
0 & 1 & 1 \
0 & 2 & 2 \
1 & 0 & 1 \
2 & 0 & 2 \
end{array}
right)$






share|improve this answer











$endgroup$













  • $begingroup$
    This is not the exact result the OP is asking. The order of the elements is different. Also the "permutation" solution is already posted in my answer
    $endgroup$
    – J42161217
    10 hours ago










  • $begingroup$
    My purpose was to introduce ArrayFlatten. Not enough info to algorithmically determine the order of perms.
    $endgroup$
    – MikeY
    9 hours ago












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






KarryMa is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194717%2fusing-good-method-to-produce-a-regular-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

IntegerDigits[{12,24,4,8,10,20},3,3]  



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}




also..



s = Transpose[Permutations /@ {{1, 1, 0}, {2, 2, 0}}];
Flatten[{{s[[1]]},Reverse@Rest@s},2]



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}







share|improve this answer











$endgroup$









  • 2




    $begingroup$
    I like the answer,thanks!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    @KarryMa Alternatively to PadLeft you can add 3 as 3rd argument IntegerDigits[{12, 24, 4, 8, 10, 20}, 3, 3].
    $endgroup$
    – Coolwater
    10 hours ago










  • $begingroup$
    yes, you are so right!
    $endgroup$
    – J42161217
    10 hours ago
















2












$begingroup$

IntegerDigits[{12,24,4,8,10,20},3,3]  



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}




also..



s = Transpose[Permutations /@ {{1, 1, 0}, {2, 2, 0}}];
Flatten[{{s[[1]]},Reverse@Rest@s},2]



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}







share|improve this answer











$endgroup$









  • 2




    $begingroup$
    I like the answer,thanks!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    @KarryMa Alternatively to PadLeft you can add 3 as 3rd argument IntegerDigits[{12, 24, 4, 8, 10, 20}, 3, 3].
    $endgroup$
    – Coolwater
    10 hours ago










  • $begingroup$
    yes, you are so right!
    $endgroup$
    – J42161217
    10 hours ago














2












2








2





$begingroup$

IntegerDigits[{12,24,4,8,10,20},3,3]  



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}




also..



s = Transpose[Permutations /@ {{1, 1, 0}, {2, 2, 0}}];
Flatten[{{s[[1]]},Reverse@Rest@s},2]



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}







share|improve this answer











$endgroup$



IntegerDigits[{12,24,4,8,10,20},3,3]  



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}




also..



s = Transpose[Permutations /@ {{1, 1, 0}, {2, 2, 0}}];
Flatten[{{s[[1]]},Reverse@Rest@s},2]



{{1,1,0},{2,2,0},{0,1,1},{0,2,2},{1,0,1},{2,0,2}}








share|improve this answer














share|improve this answer



share|improve this answer








edited 10 hours ago

























answered 15 hours ago









J42161217J42161217

4,248324




4,248324








  • 2




    $begingroup$
    I like the answer,thanks!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    @KarryMa Alternatively to PadLeft you can add 3 as 3rd argument IntegerDigits[{12, 24, 4, 8, 10, 20}, 3, 3].
    $endgroup$
    – Coolwater
    10 hours ago










  • $begingroup$
    yes, you are so right!
    $endgroup$
    – J42161217
    10 hours ago














  • 2




    $begingroup$
    I like the answer,thanks!
    $endgroup$
    – KarryMa
    15 hours ago










  • $begingroup$
    @KarryMa Alternatively to PadLeft you can add 3 as 3rd argument IntegerDigits[{12, 24, 4, 8, 10, 20}, 3, 3].
    $endgroup$
    – Coolwater
    10 hours ago










  • $begingroup$
    yes, you are so right!
    $endgroup$
    – J42161217
    10 hours ago








2




2




$begingroup$
I like the answer,thanks!
$endgroup$
– KarryMa
15 hours ago




$begingroup$
I like the answer,thanks!
$endgroup$
– KarryMa
15 hours ago












$begingroup$
@KarryMa Alternatively to PadLeft you can add 3 as 3rd argument IntegerDigits[{12, 24, 4, 8, 10, 20}, 3, 3].
$endgroup$
– Coolwater
10 hours ago




$begingroup$
@KarryMa Alternatively to PadLeft you can add 3 as 3rd argument IntegerDigits[{12, 24, 4, 8, 10, 20}, 3, 3].
$endgroup$
– Coolwater
10 hours ago












$begingroup$
yes, you are so right!
$endgroup$
– J42161217
10 hours ago




$begingroup$
yes, you are so right!
$endgroup$
– J42161217
10 hours ago











0












$begingroup$

A nice tool for this job is ArrayFlatten[ ]



a = {{1}, {2}}


$left(
begin{array}{c}
1 \
2 \
end{array}
right)$



Not sure why your rows are ordered the way they are. Are you trying to have a non-zero diagonal?



{{a,a,0},{0,a,a},{a,0,a}}// ArrayFlatten


$left(
begin{array}{ccc}
1 & 1 & 0 \
2 & 2 & 0 \
0 & 1 & 1 \
0 & 2 & 2 \
1 & 0 & 1 \
2 & 0 & 2 \
end{array}
right)$






share|improve this answer











$endgroup$













  • $begingroup$
    This is not the exact result the OP is asking. The order of the elements is different. Also the "permutation" solution is already posted in my answer
    $endgroup$
    – J42161217
    10 hours ago










  • $begingroup$
    My purpose was to introduce ArrayFlatten. Not enough info to algorithmically determine the order of perms.
    $endgroup$
    – MikeY
    9 hours ago
















0












$begingroup$

A nice tool for this job is ArrayFlatten[ ]



a = {{1}, {2}}


$left(
begin{array}{c}
1 \
2 \
end{array}
right)$



Not sure why your rows are ordered the way they are. Are you trying to have a non-zero diagonal?



{{a,a,0},{0,a,a},{a,0,a}}// ArrayFlatten


$left(
begin{array}{ccc}
1 & 1 & 0 \
2 & 2 & 0 \
0 & 1 & 1 \
0 & 2 & 2 \
1 & 0 & 1 \
2 & 0 & 2 \
end{array}
right)$






share|improve this answer











$endgroup$













  • $begingroup$
    This is not the exact result the OP is asking. The order of the elements is different. Also the "permutation" solution is already posted in my answer
    $endgroup$
    – J42161217
    10 hours ago










  • $begingroup$
    My purpose was to introduce ArrayFlatten. Not enough info to algorithmically determine the order of perms.
    $endgroup$
    – MikeY
    9 hours ago














0












0








0





$begingroup$

A nice tool for this job is ArrayFlatten[ ]



a = {{1}, {2}}


$left(
begin{array}{c}
1 \
2 \
end{array}
right)$



Not sure why your rows are ordered the way they are. Are you trying to have a non-zero diagonal?



{{a,a,0},{0,a,a},{a,0,a}}// ArrayFlatten


$left(
begin{array}{ccc}
1 & 1 & 0 \
2 & 2 & 0 \
0 & 1 & 1 \
0 & 2 & 2 \
1 & 0 & 1 \
2 & 0 & 2 \
end{array}
right)$






share|improve this answer











$endgroup$



A nice tool for this job is ArrayFlatten[ ]



a = {{1}, {2}}


$left(
begin{array}{c}
1 \
2 \
end{array}
right)$



Not sure why your rows are ordered the way they are. Are you trying to have a non-zero diagonal?



{{a,a,0},{0,a,a},{a,0,a}}// ArrayFlatten


$left(
begin{array}{ccc}
1 & 1 & 0 \
2 & 2 & 0 \
0 & 1 & 1 \
0 & 2 & 2 \
1 & 0 & 1 \
2 & 0 & 2 \
end{array}
right)$







share|improve this answer














share|improve this answer



share|improve this answer








edited 9 hours ago

























answered 12 hours ago









MikeYMikeY

3,768916




3,768916












  • $begingroup$
    This is not the exact result the OP is asking. The order of the elements is different. Also the "permutation" solution is already posted in my answer
    $endgroup$
    – J42161217
    10 hours ago










  • $begingroup$
    My purpose was to introduce ArrayFlatten. Not enough info to algorithmically determine the order of perms.
    $endgroup$
    – MikeY
    9 hours ago


















  • $begingroup$
    This is not the exact result the OP is asking. The order of the elements is different. Also the "permutation" solution is already posted in my answer
    $endgroup$
    – J42161217
    10 hours ago










  • $begingroup$
    My purpose was to introduce ArrayFlatten. Not enough info to algorithmically determine the order of perms.
    $endgroup$
    – MikeY
    9 hours ago
















$begingroup$
This is not the exact result the OP is asking. The order of the elements is different. Also the "permutation" solution is already posted in my answer
$endgroup$
– J42161217
10 hours ago




$begingroup$
This is not the exact result the OP is asking. The order of the elements is different. Also the "permutation" solution is already posted in my answer
$endgroup$
– J42161217
10 hours ago












$begingroup$
My purpose was to introduce ArrayFlatten. Not enough info to algorithmically determine the order of perms.
$endgroup$
– MikeY
9 hours ago




$begingroup$
My purpose was to introduce ArrayFlatten. Not enough info to algorithmically determine the order of perms.
$endgroup$
– MikeY
9 hours ago










KarryMa is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















KarryMa is a new contributor. Be nice, and check out our Code of Conduct.













KarryMa is a new contributor. Be nice, and check out our Code of Conduct.












KarryMa is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Mathematica Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194717%2fusing-good-method-to-produce-a-regular-matrix%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to label and detect the document text images

Tabula Rosettana

Aureus (color)