New images always predict one label












0












$begingroup$


I have trained a SVM for image classification using RGB histogram as features and a couple of other ones.



These are my feature and label sizes:



STATUS] feature vector size (11244, 525)
[STATUS] training Labels (11244,)
[STATUS] training labels encoded...
[STATUS] feature vector normalized...
[STATUS] target labels: [0 0 0 ... 1 1 1]
[STATUS] target labels shape: (11244,)


I am using sklearn's train_test_split with ratio of 0.15 for test.



Following is the classification report(100% recall and precision on test). This is weird!!



Tuning hyper-parameters for precision

Best parameters set found on development set:

{'C': 1, 'kernel': 'linear'}

Grid scores on development set:

0.991 (+/-0.005) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.852 (+/-0.003) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.993 (+/-0.003) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.991 (+/-0.005) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.999 (+/-0.002) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.993 (+/-0.003) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
1.000 (+/-0.000) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.999 (+/-0.002) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
1.000 (+/-0.000) for {'C': 10, 'kernel': 'linear'}
1.000 (+/-0.000) for {'C': 100, 'kernel': 'linear'}
1.000 (+/-0.000) for {'C': 1000, 'kernel': 'linear'}

Detailed classification report:

The model is trained on the full development set.
The scores are computed on the full evaluation set.

precision recall f1-score support

0 1.00 1.00 1.00 574
1 1.00 1.00 1.00 1113

micro avg 1.00 1.00 1.00 1687
macro avg 1.00 1.00 1.00 1687
weighted avg 1.00 1.00 1.00 1687

# Tuning hyper-parameters for recall

Best parameters set found on development set:

{'C': 1, 'kernel': 'linear'}

Grid scores on development set:

0.986 (+/-0.006) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.633 (+/-0.009) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.005) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.986 (+/-0.006) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.998 (+/-0.003) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.988 (+/-0.005) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
1.000 (+/-0.001) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.998 (+/-0.003) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
1.000 (+/-0.001) for {'C': 10, 'kernel': 'linear'}
1.000 (+/-0.001) for {'C': 100, 'kernel': 'linear'}
1.000 (+/-0.001) for {'C': 1000, 'kernel': 'linear'}

Detailed classification report:

The model is trained on the full development set.
The scores are computed on the full evaluation set.

precision recall f1-score support

0 1.00 1.00 1.00 574
1 1.00 1.00 1.00 1113

micro avg 1.00 1.00 1.00 1687
macro avg 1.00 1.00 1.00 1687
weighted avg 1.00 1.00 1.00 1687


BUT, on new images(sampled from same distribution), I am not getting even a single classification right. What could be going wrong?










share|improve this question







New contributor




1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    0












    $begingroup$


    I have trained a SVM for image classification using RGB histogram as features and a couple of other ones.



    These are my feature and label sizes:



    STATUS] feature vector size (11244, 525)
    [STATUS] training Labels (11244,)
    [STATUS] training labels encoded...
    [STATUS] feature vector normalized...
    [STATUS] target labels: [0 0 0 ... 1 1 1]
    [STATUS] target labels shape: (11244,)


    I am using sklearn's train_test_split with ratio of 0.15 for test.



    Following is the classification report(100% recall and precision on test). This is weird!!



    Tuning hyper-parameters for precision

    Best parameters set found on development set:

    {'C': 1, 'kernel': 'linear'}

    Grid scores on development set:

    0.991 (+/-0.005) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
    0.852 (+/-0.003) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
    0.993 (+/-0.003) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
    0.991 (+/-0.005) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
    0.999 (+/-0.002) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
    0.993 (+/-0.003) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
    1.000 (+/-0.000) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
    0.999 (+/-0.002) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
    1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
    1.000 (+/-0.000) for {'C': 10, 'kernel': 'linear'}
    1.000 (+/-0.000) for {'C': 100, 'kernel': 'linear'}
    1.000 (+/-0.000) for {'C': 1000, 'kernel': 'linear'}

    Detailed classification report:

    The model is trained on the full development set.
    The scores are computed on the full evaluation set.

    precision recall f1-score support

    0 1.00 1.00 1.00 574
    1 1.00 1.00 1.00 1113

    micro avg 1.00 1.00 1.00 1687
    macro avg 1.00 1.00 1.00 1687
    weighted avg 1.00 1.00 1.00 1687

    # Tuning hyper-parameters for recall

    Best parameters set found on development set:

    {'C': 1, 'kernel': 'linear'}

    Grid scores on development set:

    0.986 (+/-0.006) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
    0.633 (+/-0.009) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
    0.988 (+/-0.005) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
    0.986 (+/-0.006) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
    0.998 (+/-0.003) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
    0.988 (+/-0.005) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
    1.000 (+/-0.001) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
    0.998 (+/-0.003) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
    1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
    1.000 (+/-0.001) for {'C': 10, 'kernel': 'linear'}
    1.000 (+/-0.001) for {'C': 100, 'kernel': 'linear'}
    1.000 (+/-0.001) for {'C': 1000, 'kernel': 'linear'}

    Detailed classification report:

    The model is trained on the full development set.
    The scores are computed on the full evaluation set.

    precision recall f1-score support

    0 1.00 1.00 1.00 574
    1 1.00 1.00 1.00 1113

    micro avg 1.00 1.00 1.00 1687
    macro avg 1.00 1.00 1.00 1687
    weighted avg 1.00 1.00 1.00 1687


    BUT, on new images(sampled from same distribution), I am not getting even a single classification right. What could be going wrong?










    share|improve this question







    New contributor




    1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      0












      0








      0





      $begingroup$


      I have trained a SVM for image classification using RGB histogram as features and a couple of other ones.



      These are my feature and label sizes:



      STATUS] feature vector size (11244, 525)
      [STATUS] training Labels (11244,)
      [STATUS] training labels encoded...
      [STATUS] feature vector normalized...
      [STATUS] target labels: [0 0 0 ... 1 1 1]
      [STATUS] target labels shape: (11244,)


      I am using sklearn's train_test_split with ratio of 0.15 for test.



      Following is the classification report(100% recall and precision on test). This is weird!!



      Tuning hyper-parameters for precision

      Best parameters set found on development set:

      {'C': 1, 'kernel': 'linear'}

      Grid scores on development set:

      0.991 (+/-0.005) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
      0.852 (+/-0.003) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.993 (+/-0.003) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
      0.991 (+/-0.005) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.999 (+/-0.002) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
      0.993 (+/-0.003) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.000) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
      0.999 (+/-0.002) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
      1.000 (+/-0.000) for {'C': 10, 'kernel': 'linear'}
      1.000 (+/-0.000) for {'C': 100, 'kernel': 'linear'}
      1.000 (+/-0.000) for {'C': 1000, 'kernel': 'linear'}

      Detailed classification report:

      The model is trained on the full development set.
      The scores are computed on the full evaluation set.

      precision recall f1-score support

      0 1.00 1.00 1.00 574
      1 1.00 1.00 1.00 1113

      micro avg 1.00 1.00 1.00 1687
      macro avg 1.00 1.00 1.00 1687
      weighted avg 1.00 1.00 1.00 1687

      # Tuning hyper-parameters for recall

      Best parameters set found on development set:

      {'C': 1, 'kernel': 'linear'}

      Grid scores on development set:

      0.986 (+/-0.006) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
      0.633 (+/-0.009) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.988 (+/-0.005) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
      0.986 (+/-0.006) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.998 (+/-0.003) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
      0.988 (+/-0.005) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.001) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
      0.998 (+/-0.003) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
      1.000 (+/-0.001) for {'C': 10, 'kernel': 'linear'}
      1.000 (+/-0.001) for {'C': 100, 'kernel': 'linear'}
      1.000 (+/-0.001) for {'C': 1000, 'kernel': 'linear'}

      Detailed classification report:

      The model is trained on the full development set.
      The scores are computed on the full evaluation set.

      precision recall f1-score support

      0 1.00 1.00 1.00 574
      1 1.00 1.00 1.00 1113

      micro avg 1.00 1.00 1.00 1687
      macro avg 1.00 1.00 1.00 1687
      weighted avg 1.00 1.00 1.00 1687


      BUT, on new images(sampled from same distribution), I am not getting even a single classification right. What could be going wrong?










      share|improve this question







      New contributor




      1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I have trained a SVM for image classification using RGB histogram as features and a couple of other ones.



      These are my feature and label sizes:



      STATUS] feature vector size (11244, 525)
      [STATUS] training Labels (11244,)
      [STATUS] training labels encoded...
      [STATUS] feature vector normalized...
      [STATUS] target labels: [0 0 0 ... 1 1 1]
      [STATUS] target labels shape: (11244,)


      I am using sklearn's train_test_split with ratio of 0.15 for test.



      Following is the classification report(100% recall and precision on test). This is weird!!



      Tuning hyper-parameters for precision

      Best parameters set found on development set:

      {'C': 1, 'kernel': 'linear'}

      Grid scores on development set:

      0.991 (+/-0.005) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
      0.852 (+/-0.003) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.993 (+/-0.003) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
      0.991 (+/-0.005) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.999 (+/-0.002) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
      0.993 (+/-0.003) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.000) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
      0.999 (+/-0.002) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
      1.000 (+/-0.000) for {'C': 10, 'kernel': 'linear'}
      1.000 (+/-0.000) for {'C': 100, 'kernel': 'linear'}
      1.000 (+/-0.000) for {'C': 1000, 'kernel': 'linear'}

      Detailed classification report:

      The model is trained on the full development set.
      The scores are computed on the full evaluation set.

      precision recall f1-score support

      0 1.00 1.00 1.00 574
      1 1.00 1.00 1.00 1113

      micro avg 1.00 1.00 1.00 1687
      macro avg 1.00 1.00 1.00 1687
      weighted avg 1.00 1.00 1.00 1687

      # Tuning hyper-parameters for recall

      Best parameters set found on development set:

      {'C': 1, 'kernel': 'linear'}

      Grid scores on development set:

      0.986 (+/-0.006) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
      0.633 (+/-0.009) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.988 (+/-0.005) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
      0.986 (+/-0.006) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
      0.998 (+/-0.003) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
      0.988 (+/-0.005) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.001) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
      0.998 (+/-0.003) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
      1.000 (+/-0.000) for {'C': 1, 'kernel': 'linear'}
      1.000 (+/-0.001) for {'C': 10, 'kernel': 'linear'}
      1.000 (+/-0.001) for {'C': 100, 'kernel': 'linear'}
      1.000 (+/-0.001) for {'C': 1000, 'kernel': 'linear'}

      Detailed classification report:

      The model is trained on the full development set.
      The scores are computed on the full evaluation set.

      precision recall f1-score support

      0 1.00 1.00 1.00 574
      1 1.00 1.00 1.00 1113

      micro avg 1.00 1.00 1.00 1687
      macro avg 1.00 1.00 1.00 1687
      weighted avg 1.00 1.00 1.00 1687


      BUT, on new images(sampled from same distribution), I am not getting even a single classification right. What could be going wrong?







      scikit-learn svm






      share|improve this question







      New contributor




      1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 19 hours ago









      1.6181.618

      1




      1




      New contributor




      1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      1.618 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "557"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          1.618 is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49251%2fnew-images-always-predict-one-label%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          1.618 is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          1.618 is a new contributor. Be nice, and check out our Code of Conduct.













          1.618 is a new contributor. Be nice, and check out our Code of Conduct.












          1.618 is a new contributor. Be nice, and check out our Code of Conduct.
















          Thanks for contributing an answer to Data Science Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49251%2fnew-images-always-predict-one-label%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to label and detect the document text images

          Tabula Rosettana

          Aureus (color)