Multiple regression results help
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
For my first ever research paper I've run a hierarchal multiple linear regression with two predictors and one outcome variable, however I don't understand my results. I've found predictor A to be a significant predictor for my outcome variable alone. However, when both my predictors are in the model, predictor A is not a significant predictor, only predictor B is. How can this be if predictor A was significant in the first model? How does predictor B change how significant predictor A is?
Thank you!
multiple-regression mlr
New contributor
$endgroup$
add a comment |
$begingroup$
For my first ever research paper I've run a hierarchal multiple linear regression with two predictors and one outcome variable, however I don't understand my results. I've found predictor A to be a significant predictor for my outcome variable alone. However, when both my predictors are in the model, predictor A is not a significant predictor, only predictor B is. How can this be if predictor A was significant in the first model? How does predictor B change how significant predictor A is?
Thank you!
multiple-regression mlr
New contributor
$endgroup$
add a comment |
$begingroup$
For my first ever research paper I've run a hierarchal multiple linear regression with two predictors and one outcome variable, however I don't understand my results. I've found predictor A to be a significant predictor for my outcome variable alone. However, when both my predictors are in the model, predictor A is not a significant predictor, only predictor B is. How can this be if predictor A was significant in the first model? How does predictor B change how significant predictor A is?
Thank you!
multiple-regression mlr
New contributor
$endgroup$
For my first ever research paper I've run a hierarchal multiple linear regression with two predictors and one outcome variable, however I don't understand my results. I've found predictor A to be a significant predictor for my outcome variable alone. However, when both my predictors are in the model, predictor A is not a significant predictor, only predictor B is. How can this be if predictor A was significant in the first model? How does predictor B change how significant predictor A is?
Thank you!
multiple-regression mlr
multiple-regression mlr
New contributor
New contributor
New contributor
asked yesterday
ummmmummmm
111
111
New contributor
New contributor
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
regression coefficients reflect the simultaneous effects of multiple predictors. If the two predictors are inter-dependent (i.e. correlated) the results can differ from single input models.
$endgroup$
add a comment |
$begingroup$
The tests in multiple regression are "added last" tests. That means they test whether the model significantly improves after including the extra variable in a regression that contains all other predictors.
In your model with no predictors, adding A improves the model, so the test of A is significant in the model with only A.
In a model with A already in the model, adding B improves the model, so the test of B is significant in the model with A and B. But in a model with B already in the model, adding A doesn't improve the model, so the test of A is not significant in the model with A and B. B is doing all the work that A would do, so adding A doesn't improve the model beyond B.
As @IrishStat mentioned, this can occur when A and B are correlated (positively or negatively) with each other. It's a fairly common occurrence in regression modeling. The conclusion you might draw is that A predicts the outcome when B is not in the model (i.e., unavailable), but after including B, A doesn't do much more to predict the outcome. Unfortunately, without more information about the causal structure of your variables, there is little more interpretation available.
$endgroup$
add a comment |
$begingroup$
To expand a little on @Noah and @IrishStat's answers, in a multiple regression, coefficients for each independent variable/predictor are estimated to obtain the direct effect of each variable, using variation unique to that variable and the variable's correlation with the outcome variable, not using variation shared by predictors. (In technical terms, we are talking about variance and covariance of these variables.) The less unique variation there is, the less significant the estimate will become.
So why, in your example, did you end up with an insignificant predictor A when B was added, and not with a significant predictor A and insignificant predictor B? It is likely because the proportion of variance of predictor A that it has in common with predictor B is larger than the proportion of variance of predictor B that it has in common with predictor A.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
ummmm is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402894%2fmultiple-regression-results-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
regression coefficients reflect the simultaneous effects of multiple predictors. If the two predictors are inter-dependent (i.e. correlated) the results can differ from single input models.
$endgroup$
add a comment |
$begingroup$
regression coefficients reflect the simultaneous effects of multiple predictors. If the two predictors are inter-dependent (i.e. correlated) the results can differ from single input models.
$endgroup$
add a comment |
$begingroup$
regression coefficients reflect the simultaneous effects of multiple predictors. If the two predictors are inter-dependent (i.e. correlated) the results can differ from single input models.
$endgroup$
regression coefficients reflect the simultaneous effects of multiple predictors. If the two predictors are inter-dependent (i.e. correlated) the results can differ from single input models.
answered yesterday
IrishStatIrishStat
21.5k42342
21.5k42342
add a comment |
add a comment |
$begingroup$
The tests in multiple regression are "added last" tests. That means they test whether the model significantly improves after including the extra variable in a regression that contains all other predictors.
In your model with no predictors, adding A improves the model, so the test of A is significant in the model with only A.
In a model with A already in the model, adding B improves the model, so the test of B is significant in the model with A and B. But in a model with B already in the model, adding A doesn't improve the model, so the test of A is not significant in the model with A and B. B is doing all the work that A would do, so adding A doesn't improve the model beyond B.
As @IrishStat mentioned, this can occur when A and B are correlated (positively or negatively) with each other. It's a fairly common occurrence in regression modeling. The conclusion you might draw is that A predicts the outcome when B is not in the model (i.e., unavailable), but after including B, A doesn't do much more to predict the outcome. Unfortunately, without more information about the causal structure of your variables, there is little more interpretation available.
$endgroup$
add a comment |
$begingroup$
The tests in multiple regression are "added last" tests. That means they test whether the model significantly improves after including the extra variable in a regression that contains all other predictors.
In your model with no predictors, adding A improves the model, so the test of A is significant in the model with only A.
In a model with A already in the model, adding B improves the model, so the test of B is significant in the model with A and B. But in a model with B already in the model, adding A doesn't improve the model, so the test of A is not significant in the model with A and B. B is doing all the work that A would do, so adding A doesn't improve the model beyond B.
As @IrishStat mentioned, this can occur when A and B are correlated (positively or negatively) with each other. It's a fairly common occurrence in regression modeling. The conclusion you might draw is that A predicts the outcome when B is not in the model (i.e., unavailable), but after including B, A doesn't do much more to predict the outcome. Unfortunately, without more information about the causal structure of your variables, there is little more interpretation available.
$endgroup$
add a comment |
$begingroup$
The tests in multiple regression are "added last" tests. That means they test whether the model significantly improves after including the extra variable in a regression that contains all other predictors.
In your model with no predictors, adding A improves the model, so the test of A is significant in the model with only A.
In a model with A already in the model, adding B improves the model, so the test of B is significant in the model with A and B. But in a model with B already in the model, adding A doesn't improve the model, so the test of A is not significant in the model with A and B. B is doing all the work that A would do, so adding A doesn't improve the model beyond B.
As @IrishStat mentioned, this can occur when A and B are correlated (positively or negatively) with each other. It's a fairly common occurrence in regression modeling. The conclusion you might draw is that A predicts the outcome when B is not in the model (i.e., unavailable), but after including B, A doesn't do much more to predict the outcome. Unfortunately, without more information about the causal structure of your variables, there is little more interpretation available.
$endgroup$
The tests in multiple regression are "added last" tests. That means they test whether the model significantly improves after including the extra variable in a regression that contains all other predictors.
In your model with no predictors, adding A improves the model, so the test of A is significant in the model with only A.
In a model with A already in the model, adding B improves the model, so the test of B is significant in the model with A and B. But in a model with B already in the model, adding A doesn't improve the model, so the test of A is not significant in the model with A and B. B is doing all the work that A would do, so adding A doesn't improve the model beyond B.
As @IrishStat mentioned, this can occur when A and B are correlated (positively or negatively) with each other. It's a fairly common occurrence in regression modeling. The conclusion you might draw is that A predicts the outcome when B is not in the model (i.e., unavailable), but after including B, A doesn't do much more to predict the outcome. Unfortunately, without more information about the causal structure of your variables, there is little more interpretation available.
answered yesterday
NoahNoah
3,6811417
3,6811417
add a comment |
add a comment |
$begingroup$
To expand a little on @Noah and @IrishStat's answers, in a multiple regression, coefficients for each independent variable/predictor are estimated to obtain the direct effect of each variable, using variation unique to that variable and the variable's correlation with the outcome variable, not using variation shared by predictors. (In technical terms, we are talking about variance and covariance of these variables.) The less unique variation there is, the less significant the estimate will become.
So why, in your example, did you end up with an insignificant predictor A when B was added, and not with a significant predictor A and insignificant predictor B? It is likely because the proportion of variance of predictor A that it has in common with predictor B is larger than the proportion of variance of predictor B that it has in common with predictor A.
$endgroup$
add a comment |
$begingroup$
To expand a little on @Noah and @IrishStat's answers, in a multiple regression, coefficients for each independent variable/predictor are estimated to obtain the direct effect of each variable, using variation unique to that variable and the variable's correlation with the outcome variable, not using variation shared by predictors. (In technical terms, we are talking about variance and covariance of these variables.) The less unique variation there is, the less significant the estimate will become.
So why, in your example, did you end up with an insignificant predictor A when B was added, and not with a significant predictor A and insignificant predictor B? It is likely because the proportion of variance of predictor A that it has in common with predictor B is larger than the proportion of variance of predictor B that it has in common with predictor A.
$endgroup$
add a comment |
$begingroup$
To expand a little on @Noah and @IrishStat's answers, in a multiple regression, coefficients for each independent variable/predictor are estimated to obtain the direct effect of each variable, using variation unique to that variable and the variable's correlation with the outcome variable, not using variation shared by predictors. (In technical terms, we are talking about variance and covariance of these variables.) The less unique variation there is, the less significant the estimate will become.
So why, in your example, did you end up with an insignificant predictor A when B was added, and not with a significant predictor A and insignificant predictor B? It is likely because the proportion of variance of predictor A that it has in common with predictor B is larger than the proportion of variance of predictor B that it has in common with predictor A.
$endgroup$
To expand a little on @Noah and @IrishStat's answers, in a multiple regression, coefficients for each independent variable/predictor are estimated to obtain the direct effect of each variable, using variation unique to that variable and the variable's correlation with the outcome variable, not using variation shared by predictors. (In technical terms, we are talking about variance and covariance of these variables.) The less unique variation there is, the less significant the estimate will become.
So why, in your example, did you end up with an insignificant predictor A when B was added, and not with a significant predictor A and insignificant predictor B? It is likely because the proportion of variance of predictor A that it has in common with predictor B is larger than the proportion of variance of predictor B that it has in common with predictor A.
answered 19 hours ago
AlexKAlexK
2108
2108
add a comment |
add a comment |
ummmm is a new contributor. Be nice, and check out our Code of Conduct.
ummmm is a new contributor. Be nice, and check out our Code of Conduct.
ummmm is a new contributor. Be nice, and check out our Code of Conduct.
ummmm is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402894%2fmultiple-regression-results-help%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown