How many permutations does a countable set have? [duplicate]












2












$begingroup$



This question already has an answer here:




  • Is symmetric group on natural numbers countable?

    8 answers




I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    yesterday
















2












$begingroup$



This question already has an answer here:




  • Is symmetric group on natural numbers countable?

    8 answers




I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Asaf Karagila yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    yesterday














2












2








2


0



$begingroup$



This question already has an answer here:




  • Is symmetric group on natural numbers countable?

    8 answers




I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?










share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





This question already has an answer here:




  • Is symmetric group on natural numbers countable?

    8 answers




I have just come across the Riemann Rearrangement theorem and, from what I understand, it shows that any real can be written as a permutation of a conditionally convergent series. The problem I have is that permutations of an infinite series are countably infinite, so in theory one could list all possible permutations of the series which would be equivalent to listing all real numbers. But reals are uncountable.



This seems like a contradiction to me, where am I wrong?





This question already has an answer here:




  • Is symmetric group on natural numbers countable?

    8 answers








permutations real-numbers






share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited yesterday









Asaf Karagila

308k33441774




308k33441774






New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









Lorenzo Lorenzo

184




184




New contributor




Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Lorenzo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




marked as duplicate by Asaf Karagila yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Asaf Karagila yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    yesterday


















  • $begingroup$
    While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
    $endgroup$
    – Asaf Karagila
    yesterday
















$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
yesterday




$begingroup$
While the motivation for this question is the rearrangement theorem, the title should reflect the actual question instead.
$endgroup$
– Asaf Karagila
yesterday










1 Answer
1






active

oldest

votes


















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    yesterday






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    yesterday










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    yesterday










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    yesterday












  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    yesterday


















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    yesterday






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    yesterday










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    yesterday










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    yesterday












  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    yesterday
















6












$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    yesterday






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    yesterday










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    yesterday










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    yesterday












  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    yesterday














6












6








6





$begingroup$

Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post






share|cite|improve this answer









$endgroup$



Permutations of an infinite series are not countably infinite, so there is no contradiction.



The set of permutations of an infinite series is the set of all bijections from $mathbb N$ to $mathbb N$, which is an uncountably infinite set. For one, the Riemann theorem you state can be used to prove that it is uncountable, or, more set-theoretically, a variant of the diagonal argument can be used, as in this post







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered yesterday









5xum5xum

92.5k394162




92.5k394162












  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    yesterday






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    yesterday










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    yesterday










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    yesterday












  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    yesterday


















  • $begingroup$
    Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
    $endgroup$
    – Lorenzo
    yesterday






  • 1




    $begingroup$
    @Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
    $endgroup$
    – 5xum
    yesterday










  • $begingroup$
    just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
    $endgroup$
    – Lorenzo
    yesterday










  • $begingroup$
    @Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
    $endgroup$
    – 5xum
    yesterday












  • $begingroup$
    Ok I get it now, thanks
    $endgroup$
    – Lorenzo
    yesterday
















$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
yesterday




$begingroup$
Ok that makes sense, but I thought one could list all permutations by having permutations of different 'lengths' n (that permutate only the first n terms, where all permutations of length n are finite) and then listing each one after the other ie all permutations of length 1, all permutations of length 2 etc.
$endgroup$
– Lorenzo
yesterday




1




1




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
yesterday




$begingroup$
@Lorenzo There is no "length" to speak of here. Each permutation is a permutation of "infinite" length, if you will. It is a rearangement of the entire set $mathbb N$.
$endgroup$
– 5xum
yesterday












$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
yesterday




$begingroup$
just saying length n as in all other terms beyond n are not changed eg. (13245678...) would be of length 3
$endgroup$
– Lorenzo
yesterday












$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
yesterday






$begingroup$
@Lorenzo For example, when, in your listing, to you list the permutation that maps $1$ to $2$, $2$ to $1$, $3$ to $4$, $4$ to $3$, $2k-1$ to $2k$ and $2k$ to $2k-1$?. There is no $n$ at which all terms beyond $n$ are unchanged! Every integer gets moved either one up or one down.
$endgroup$
– 5xum
yesterday














$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
yesterday




$begingroup$
Ok I get it now, thanks
$endgroup$
– Lorenzo
yesterday



Popular posts from this blog

How to label and detect the document text images

Vallis Paradisi

Tabula Rosettana