How can I plot a Farey diagram?












4












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    10 hours ago


















4












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    10 hours ago
















4












4








4


2



$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




How can I plot the following diagram for a Farey series?



enter image description here







graphics number-theory






share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited yesterday









Michael E2

150k12203482




150k12203482






New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









Gustavo RubianoGustavo Rubiano

243




243




New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    10 hours ago




















  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    yesterday






  • 1




    $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    yesterday






  • 1




    $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    yesterday










  • $begingroup$
    Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
    $endgroup$
    – Michael E2
    10 hours ago


















$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday




$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday




1




1




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday




1




1




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday












$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago






$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago












3 Answers
3






active

oldest

votes


















11












$begingroup$

The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
{x[1/n, 1, t], y[1/n, 1, t]},
{t, 0, 2 Pi},
PlotStyle -> {Thickness[0.002], Black}
]

Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]


Mathematica graphics



I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2], {
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
}]

computeLabels[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]

labels = Reverse@Join[
{"1/0"},
computeLabels[{1, 0}, {1, 1}],
{"1/1"},
computeLabels[{1, 1}, {0, 1}],
{"0/1"},
computeLabelsNegative[{1, 0}, {1, 1}],
{"-1,1"},
computeLabelsNegative[{1, 1}, {0, 1}]
];

coords = CirclePoints[{1.1, 186 Degree}, 64];

Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, {labels, coords}],
ImageSize -> 500
]


Mathematica graphics






share|improve this answer











$endgroup$





















    3












    $begingroup$

    I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



    On that basis, you can generate the sequence as follows, for instance:



    ClearAll[farey]
    farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort


    So for instance:



    farey[5]



    {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}




    I am not sure how these sequences are connected with the figure you showed though.






    share|improve this answer









    $endgroup$













    • $begingroup$
      Thanks to C.E., it is a concrete answer
      $endgroup$
      – Gustavo Rubiano
      15 hours ago



















    2












    $begingroup$

    Using Graph with a bit of coding:



    addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
    With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

    addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
    With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

    addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
    With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

    addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
    With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

    fLabel[fr_, angle_] :=
    With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]

    fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
    fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

    FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
    Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
    cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
    nopts = FilterRules[Flatten[{opts}], Options[Graph]];
    top = {fr[0,1], fr[1,1], fr[1,0]};
    bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
    stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
    i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
    i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
    vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
    edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
    coords = CirclePoints[{1,0},Length[vert]];
    labpos = Range[1, Length[vert], 2 ^ (d - 1)];
    labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
    edgestyle = Black;
    dstyle = Black;
    If[cfunc =!= Automatic,
    edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
    edgestyle = edgestyle / Max[edgestyle];
    edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
    dstyle = cfunc[1]
    ];
    Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
    EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
    PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
    ]


    Example:



    FareyDiagram[4]


    enter image description here



    FareyDiagram[6, 4, ColorFunction -> Hue, 
    VertexLabelStyle -> Darker[Red]]


    enter image description here






    share|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "387"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });






      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.










      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



      x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
      y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
      hypocycloid[n_] := ParametricPlot[
      {x[1/n, 1, t], y[1/n, 1, t]},
      {t, 0, 2 Pi},
      PlotStyle -> {Thickness[0.002], Black}
      ]

      Show[
      Graphics[Circle[{0, 0}, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      ImageSize -> 500
      ]


      Mathematica graphics



      I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



      How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



      mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
      recursive[v1_, v2_, depth_] := If[
      depth > 2,
      mediant[v1, v2], {
      recursive[v1, mediant[v1, v2], depth + 1],
      mediant[v1, v2],
      recursive[mediant[v1, v2], v2, depth + 1]
      }]

      computeLabels[v1_, v2_] := Module[{numbers},
      numbers =
      Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
      StringTemplate["``/``"] @@@ numbers
      ]
      computeLabelsNegative[v1_, v2_] := Module[{numbers},
      numbers =
      Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
      StringTemplate["-`2`/`1`"] @@@ numbers
      ]

      labels = Reverse@Join[
      {"1/0"},
      computeLabels[{1, 0}, {1, 1}],
      {"1/1"},
      computeLabels[{1, 1}, {0, 1}],
      {"0/1"},
      computeLabelsNegative[{1, 0}, {1, 1}],
      {"-1,1"},
      computeLabelsNegative[{1, 1}, {0, 1}]
      ];

      coords = CirclePoints[{1.1, 186 Degree}, 64];

      Show[
      Graphics[Circle[{0, 0}, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      Graphics@MapThread[Text, {labels, coords}],
      ImageSize -> 500
      ]


      Mathematica graphics






      share|improve this answer











      $endgroup$


















        11












        $begingroup$

        The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



        x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
        y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
        hypocycloid[n_] := ParametricPlot[
        {x[1/n, 1, t], y[1/n, 1, t]},
        {t, 0, 2 Pi},
        PlotStyle -> {Thickness[0.002], Black}
        ]

        Show[
        Graphics[Circle[{0, 0}, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        ImageSize -> 500
        ]


        Mathematica graphics



        I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



        How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



        mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
        recursive[v1_, v2_, depth_] := If[
        depth > 2,
        mediant[v1, v2], {
        recursive[v1, mediant[v1, v2], depth + 1],
        mediant[v1, v2],
        recursive[mediant[v1, v2], v2, depth + 1]
        }]

        computeLabels[v1_, v2_] := Module[{numbers},
        numbers =
        Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
        StringTemplate["``/``"] @@@ numbers
        ]
        computeLabelsNegative[v1_, v2_] := Module[{numbers},
        numbers =
        Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
        StringTemplate["-`2`/`1`"] @@@ numbers
        ]

        labels = Reverse@Join[
        {"1/0"},
        computeLabels[{1, 0}, {1, 1}],
        {"1/1"},
        computeLabels[{1, 1}, {0, 1}],
        {"0/1"},
        computeLabelsNegative[{1, 0}, {1, 1}],
        {"-1,1"},
        computeLabelsNegative[{1, 1}, {0, 1}]
        ];

        coords = CirclePoints[{1.1, 186 Degree}, 64];

        Show[
        Graphics[Circle[{0, 0}, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        Graphics@MapThread[Text, {labels, coords}],
        ImageSize -> 500
        ]


        Mathematica graphics






        share|improve this answer











        $endgroup$
















          11












          11








          11





          $begingroup$

          The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          {x[1/n, 1, t], y[1/n, 1, t]},
          {t, 0, 2 Pi},
          PlotStyle -> {Thickness[0.002], Black}
          ]

          Show[
          Graphics[Circle[{0, 0}, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2], {
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          }]

          computeLabels[v1_, v2_] := Module[{numbers},
          numbers =
          Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[{numbers},
          numbers =
          Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          {"1/0"},
          computeLabels[{1, 0}, {1, 1}],
          {"1/1"},
          computeLabels[{1, 1}, {0, 1}],
          {"0/1"},
          computeLabelsNegative[{1, 0}, {1, 1}],
          {"-1,1"},
          computeLabelsNegative[{1, 1}, {0, 1}]
          ];

          coords = CirclePoints[{1.1, 186 Degree}, 64];

          Show[
          Graphics[Circle[{0, 0}, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, {labels, coords}],
          ImageSize -> 500
          ]


          Mathematica graphics






          share|improve this answer











          $endgroup$



          The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          {x[1/n, 1, t], y[1/n, 1, t]},
          {t, 0, 2 Pi},
          PlotStyle -> {Thickness[0.002], Black}
          ]

          Show[
          Graphics[Circle[{0, 0}, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2], {
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          }]

          computeLabels[v1_, v2_] := Module[{numbers},
          numbers =
          Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[{numbers},
          numbers =
          Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          {"1/0"},
          computeLabels[{1, 0}, {1, 1}],
          {"1/1"},
          computeLabels[{1, 1}, {0, 1}],
          {"0/1"},
          computeLabelsNegative[{1, 0}, {1, 1}],
          {"-1,1"},
          computeLabelsNegative[{1, 1}, {0, 1}]
          ];

          coords = CirclePoints[{1.1, 186 Degree}, 64];

          Show[
          Graphics[Circle[{0, 0}, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, {labels, coords}],
          ImageSize -> 500
          ]


          Mathematica graphics







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 21 hours ago

























          answered yesterday









          C. E.C. E.

          51.1k3101207




          51.1k3101207























              3












              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$













              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                15 hours ago
















              3












              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$













              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                15 hours ago














              3












              3








              3





              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$



              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              {0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}




              I am not sure how these sequences are connected with the figure you showed though.







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered yesterday









              MarcoBMarcoB

              38.6k557115




              38.6k557115












              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                15 hours ago


















              • $begingroup$
                Thanks to C.E., it is a concrete answer
                $endgroup$
                – Gustavo Rubiano
                15 hours ago
















              $begingroup$
              Thanks to C.E., it is a concrete answer
              $endgroup$
              – Gustavo Rubiano
              15 hours ago




              $begingroup$
              Thanks to C.E., it is a concrete answer
              $endgroup$
              – Gustavo Rubiano
              15 hours ago











              2












              $begingroup$

              Using Graph with a bit of coding:



              addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
              With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

              addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
              With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

              addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
              With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

              addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
              With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

              fLabel[fr_, angle_] :=
              With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]

              fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
              fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

              FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
              Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
              cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
              nopts = FilterRules[Flatten[{opts}], Options[Graph]];
              top = {fr[0,1], fr[1,1], fr[1,0]};
              bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
              stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
              i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
              i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
              vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
              edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
              coords = CirclePoints[{1,0},Length[vert]];
              labpos = Range[1, Length[vert], 2 ^ (d - 1)];
              labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
              edgestyle = Black;
              dstyle = Black;
              If[cfunc =!= Automatic,
              edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
              edgestyle = edgestyle / Max[edgestyle];
              edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
              dstyle = cfunc[1]
              ];
              Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
              EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
              PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
              ]


              Example:



              FareyDiagram[4]


              enter image description here



              FareyDiagram[6, 4, ColorFunction -> Hue, 
              VertexLabelStyle -> Darker[Red]]


              enter image description here






              share|improve this answer











              $endgroup$


















                2












                $begingroup$

                Using Graph with a bit of coding:



                addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
                With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
                With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
                With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
                With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                fLabel[fr_, angle_] :=
                With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]

                fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
                cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
                nopts = FilterRules[Flatten[{opts}], Options[Graph]];
                top = {fr[0,1], fr[1,1], fr[1,0]};
                bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
                stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
                i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
                coords = CirclePoints[{1,0},Length[vert]];
                labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
                edgestyle = Black;
                dstyle = Black;
                If[cfunc =!= Automatic,
                edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
                edgestyle = edgestyle / Max[edgestyle];
                edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                dstyle = cfunc[1]
                ];
                Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
                EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
                PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                ]


                Example:



                FareyDiagram[4]


                enter image description here



                FareyDiagram[6, 4, ColorFunction -> Hue, 
                VertexLabelStyle -> Darker[Red]]


                enter image description here






                share|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Using Graph with a bit of coding:



                  addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
                  With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
                  With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
                  With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
                  With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  fLabel[fr_, angle_] :=
                  With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]

                  fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                  fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                  FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                  Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
                  cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
                  nopts = FilterRules[Flatten[{opts}], Options[Graph]];
                  top = {fr[0,1], fr[1,1], fr[1,0]};
                  bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
                  stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
                  i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                  i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                  vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                  edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
                  coords = CirclePoints[{1,0},Length[vert]];
                  labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                  labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
                  edgestyle = Black;
                  dstyle = Black;
                  If[cfunc =!= Automatic,
                  edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
                  edgestyle = edgestyle / Max[edgestyle];
                  edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                  dstyle = cfunc[1]
                  ];
                  Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
                  EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
                  PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                  ]


                  Example:



                  FareyDiagram[4]


                  enter image description here



                  FareyDiagram[6, 4, ColorFunction -> Hue, 
                  VertexLabelStyle -> Darker[Red]]


                  enter image description here






                  share|improve this answer











                  $endgroup$



                  Using Graph with a bit of coding:



                  addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
                  With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
                  With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
                  With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
                  With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]

                  fLabel[fr_, angle_] :=
                  With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]

                  fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
                  fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]

                  FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
                  Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
                  cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
                  nopts = FilterRules[Flatten[{opts}], Options[Graph]];
                  top = {fr[0,1], fr[1,1], fr[1,0]};
                  bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
                  stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
                  i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
                  i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
                  vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
                  edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
                  coords = CirclePoints[{1,0},Length[vert]];
                  labpos = Range[1, Length[vert], 2 ^ (d - 1)];
                  labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
                  edgestyle = Black;
                  dstyle = Black;
                  If[cfunc =!= Automatic,
                  edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
                  edgestyle = edgestyle / Max[edgestyle];
                  edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
                  dstyle = cfunc[1]
                  ];
                  Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
                  EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
                  PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
                  ]


                  Example:



                  FareyDiagram[4]


                  enter image description here



                  FareyDiagram[6, 4, ColorFunction -> Hue, 
                  VertexLabelStyle -> Darker[Red]]


                  enter image description here







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 12 hours ago

























                  answered 12 hours ago









                  halmirhalmir

                  10.7k2544




                  10.7k2544






















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.










                      draft saved

                      draft discarded


















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.













                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.












                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.
















                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to label and detect the document text images

                      Vallis Paradisi

                      Tabula Rosettana