How can I plot a Farey diagram?
$begingroup$
How can I plot the following diagram for a Farey series?
graphics number-theory
New contributor
$endgroup$
add a comment |
$begingroup$
How can I plot the following diagram for a Farey series?
graphics number-theory
New contributor
$endgroup$
$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday
1
$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday
1
$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday
$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago
add a comment |
$begingroup$
How can I plot the following diagram for a Farey series?
graphics number-theory
New contributor
$endgroup$
How can I plot the following diagram for a Farey series?
graphics number-theory
graphics number-theory
New contributor
New contributor
edited yesterday
Michael E2
150k12203482
150k12203482
New contributor
asked yesterday
Gustavo RubianoGustavo Rubiano
243
243
New contributor
New contributor
$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday
1
$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday
1
$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday
$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago
add a comment |
$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday
1
$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday
1
$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday
$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago
$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday
$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday
1
1
$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday
$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday
1
1
$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday
$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday
$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago
$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:
x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
{x[1/n, 1, t], y[1/n, 1, t]},
{t, 0, 2 Pi},
PlotStyle -> {Thickness[0.002], Black}
]
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]
I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.
How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.
mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2], {
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
}]
computeLabels[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]
labels = Reverse@Join[
{"1/0"},
computeLabels[{1, 0}, {1, 1}],
{"1/1"},
computeLabels[{1, 1}, {0, 1}],
{"0/1"},
computeLabelsNegative[{1, 0}, {1, 1}],
{"-1,1"},
computeLabelsNegative[{1, 1}, {0, 1}]
];
coords = CirclePoints[{1.1, 186 Degree}, 64];
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, {labels, coords}],
ImageSize -> 500
]
$endgroup$
add a comment |
$begingroup$
I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".
On that basis, you can generate the sequence as follows, for instance:
ClearAll[farey]
farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort
So for instance:
farey[5]
{0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
I am not sure how these sequences are connected with the figure you showed though.
$endgroup$
$begingroup$
Thanks to C.E., it is a concrete answer
$endgroup$
– Gustavo Rubiano
15 hours ago
add a comment |
$begingroup$
Using Graph with a bit of coding:
addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
fLabel[fr_, angle_] :=
With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]
fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]
FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
nopts = FilterRules[Flatten[{opts}], Options[Graph]];
top = {fr[0,1], fr[1,1], fr[1,0]};
bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
coords = CirclePoints[{1,0},Length[vert]];
labpos = Range[1, Length[vert], 2 ^ (d - 1)];
labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
edgestyle = Black;
dstyle = Black;
If[cfunc =!= Automatic,
edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
edgestyle = edgestyle / Max[edgestyle];
edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
dstyle = cfunc[1]
];
Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
]
Example:
FareyDiagram[4]
FareyDiagram[6, 4, ColorFunction -> Hue,
VertexLabelStyle -> Darker[Red]]
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:
x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
{x[1/n, 1, t], y[1/n, 1, t]},
{t, 0, 2 Pi},
PlotStyle -> {Thickness[0.002], Black}
]
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]
I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.
How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.
mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2], {
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
}]
computeLabels[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]
labels = Reverse@Join[
{"1/0"},
computeLabels[{1, 0}, {1, 1}],
{"1/1"},
computeLabels[{1, 1}, {0, 1}],
{"0/1"},
computeLabelsNegative[{1, 0}, {1, 1}],
{"-1,1"},
computeLabelsNegative[{1, 1}, {0, 1}]
];
coords = CirclePoints[{1.1, 186 Degree}, 64];
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, {labels, coords}],
ImageSize -> 500
]
$endgroup$
add a comment |
$begingroup$
The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:
x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
{x[1/n, 1, t], y[1/n, 1, t]},
{t, 0, 2 Pi},
PlotStyle -> {Thickness[0.002], Black}
]
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]
I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.
How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.
mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2], {
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
}]
computeLabels[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]
labels = Reverse@Join[
{"1/0"},
computeLabels[{1, 0}, {1, 1}],
{"1/1"},
computeLabels[{1, 1}, {0, 1}],
{"0/1"},
computeLabelsNegative[{1, 0}, {1, 1}],
{"-1,1"},
computeLabelsNegative[{1, 1}, {0, 1}]
];
coords = CirclePoints[{1.1, 186 Degree}, 64];
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, {labels, coords}],
ImageSize -> 500
]
$endgroup$
add a comment |
$begingroup$
The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:
x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
{x[1/n, 1, t], y[1/n, 1, t]},
{t, 0, 2 Pi},
PlotStyle -> {Thickness[0.002], Black}
]
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]
I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.
How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.
mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2], {
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
}]
computeLabels[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]
labels = Reverse@Join[
{"1/0"},
computeLabels[{1, 0}, {1, 1}],
{"1/1"},
computeLabels[{1, 1}, {0, 1}],
{"0/1"},
computeLabelsNegative[{1, 0}, {1, 1}],
{"-1,1"},
computeLabelsNegative[{1, 1}, {0, 1}]
];
coords = CirclePoints[{1.1, 186 Degree}, 64];
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, {labels, coords}],
ImageSize -> 500
]
$endgroup$
The curvilinear triangles which are characteristic for this type of plot are called hypocycloid curves. We can use the parametric equations on Wikipedia to plot these, like so:
x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
{x[1/n, 1, t], y[1/n, 1, t]},
{t, 0, 2 Pi},
PlotStyle -> {Thickness[0.002], Black}
]
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]
I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.
How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.
mediant[{a_, b_}, {c_, d_}] := {a + c, b + d}
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2], {
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
}]
computeLabels[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[{numbers},
numbers =
Cases[recursive[v1, v2, 0], {_Integer, _Integer}, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]
labels = Reverse@Join[
{"1/0"},
computeLabels[{1, 0}, {1, 1}],
{"1/1"},
computeLabels[{1, 1}, {0, 1}],
{"0/1"},
computeLabelsNegative[{1, 0}, {1, 1}],
{"-1,1"},
computeLabelsNegative[{1, 1}, {0, 1}]
];
coords = CirclePoints[{1.1, 186 Degree}, 64];
Show[
Graphics[Circle[{0, 0}, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, {labels, coords}],
ImageSize -> 500
]
edited 21 hours ago
answered yesterday
C. E.C. E.
51.1k3101207
51.1k3101207
add a comment |
add a comment |
$begingroup$
I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".
On that basis, you can generate the sequence as follows, for instance:
ClearAll[farey]
farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort
So for instance:
farey[5]
{0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
I am not sure how these sequences are connected with the figure you showed though.
$endgroup$
$begingroup$
Thanks to C.E., it is a concrete answer
$endgroup$
– Gustavo Rubiano
15 hours ago
add a comment |
$begingroup$
I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".
On that basis, you can generate the sequence as follows, for instance:
ClearAll[farey]
farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort
So for instance:
farey[5]
{0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
I am not sure how these sequences are connected with the figure you showed though.
$endgroup$
$begingroup$
Thanks to C.E., it is a concrete answer
$endgroup$
– Gustavo Rubiano
15 hours ago
add a comment |
$begingroup$
I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".
On that basis, you can generate the sequence as follows, for instance:
ClearAll[farey]
farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort
So for instance:
farey[5]
{0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
I am not sure how these sequences are connected with the figure you showed though.
$endgroup$
I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".
On that basis, you can generate the sequence as follows, for instance:
ClearAll[farey]
farey[n_Integer] := (Divide @@@ Subsets[Range[n], {2}]) ~ Join ~ {0, 1} //DeleteDuplicates //Sort
So for instance:
farey[5]
{0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1}
I am not sure how these sequences are connected with the figure you showed though.
answered yesterday
MarcoBMarcoB
38.6k557115
38.6k557115
$begingroup$
Thanks to C.E., it is a concrete answer
$endgroup$
– Gustavo Rubiano
15 hours ago
add a comment |
$begingroup$
Thanks to C.E., it is a concrete answer
$endgroup$
– Gustavo Rubiano
15 hours ago
$begingroup$
Thanks to C.E., it is a concrete answer
$endgroup$
– Gustavo Rubiano
15 hours ago
$begingroup$
Thanks to C.E., it is a concrete answer
$endgroup$
– Gustavo Rubiano
15 hours ago
add a comment |
$begingroup$
Using Graph with a bit of coding:
addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
fLabel[fr_, angle_] :=
With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]
fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]
FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
nopts = FilterRules[Flatten[{opts}], Options[Graph]];
top = {fr[0,1], fr[1,1], fr[1,0]};
bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
coords = CirclePoints[{1,0},Length[vert]];
labpos = Range[1, Length[vert], 2 ^ (d - 1)];
labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
edgestyle = Black;
dstyle = Black;
If[cfunc =!= Automatic,
edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
edgestyle = edgestyle / Max[edgestyle];
edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
dstyle = cfunc[1]
];
Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
]
Example:
FareyDiagram[4]
FareyDiagram[6, 4, ColorFunction -> Hue,
VertexLabelStyle -> Darker[Red]]
$endgroup$
add a comment |
$begingroup$
Using Graph with a bit of coding:
addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
fLabel[fr_, angle_] :=
With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]
fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]
FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
nopts = FilterRules[Flatten[{opts}], Options[Graph]];
top = {fr[0,1], fr[1,1], fr[1,0]};
bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
coords = CirclePoints[{1,0},Length[vert]];
labpos = Range[1, Length[vert], 2 ^ (d - 1)];
labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
edgestyle = Black;
dstyle = Black;
If[cfunc =!= Automatic,
edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
edgestyle = edgestyle / Max[edgestyle];
edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
dstyle = cfunc[1]
];
Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
]
Example:
FareyDiagram[4]
FareyDiagram[6, 4, ColorFunction -> Hue,
VertexLabelStyle -> Darker[Red]]
$endgroup$
add a comment |
$begingroup$
Using Graph with a bit of coding:
addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
fLabel[fr_, angle_] :=
With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]
fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]
FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
nopts = FilterRules[Flatten[{opts}], Options[Graph]];
top = {fr[0,1], fr[1,1], fr[1,0]};
bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
coords = CirclePoints[{1,0},Length[vert]];
labpos = Range[1, Length[vert], 2 ^ (d - 1)];
labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
edgestyle = Black;
dstyle = Black;
If[cfunc =!= Automatic,
edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
edgestyle = edgestyle / Max[edgestyle];
edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
dstyle = cfunc[1]
];
Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
]
Example:
FareyDiagram[4]
FareyDiagram[6, 4, ColorFunction -> Hue,
VertexLabelStyle -> Darker[Red]]
$endgroup$
Using Graph with a bit of coding:
addPoint[{p : h_[a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
addPoint[{p : h_[-1][a_,b_], q : h_[-1][c_,d_]}, i_] :=
With[{np = h[-1][a + c, b + d]}, Sow[{p [UndirectedEdge] np, np [UndirectedEdge] q}]; Sow[{i, i}, "Depth"]; {p, np, q}]
fLabel[fr_, angle_] :=
With[{tangle=ArcTan@@angle}, Placed[fLabel[fr], AngleVector[{1/2, 1/2}, {.7, #}] & /@{tangle, tangle+Pi}]]
fLabel[h_[a_, b_]] := ToString[a] ~~ "/" ~~ ToString[b]
fLabel[h_[-1][a_, b_]] := "-" ~~ ToString[a] ~~ "/" ~~ ToString[b]
FareyDiagram[n_Integer, d_Integer: 1, opts___?OptionQ] :=
Block[{fr, top, bottom, stedges, toppart, bottompart, vert, edges, coords, labels, labpos, cfunc, i, edgestyle, dstyle, nopts},
cfunc = ColorFunction /. Flatten[{opts}] /. ColorFunction -> Automatic;
nopts = FilterRules[Flatten[{opts}], Options[Graph]];
top = {fr[0,1], fr[1,1], fr[1,0]};
bottom = {fr[1,0], fr[-1][1,1], fr[0,1]};
stedges = UndirectedEdge@@@Join[Partition[top, 2, 1], Partition[bottom, 2, 1], {{fr[0, 1],fr[1, 0]}}];
i = 0;toppart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#, 2, 1],1]][[All,1]])&, top, n]];
i = 0;bottompart = Reap[Nest[(i++; Split[Flatten[addPoint[#, i] & /@ Partition[#,2,1],1]][[All,1]])&,bottom, n]];
vert = Join[toppart[[1]], bottompart[[1, 2;;-2]]];
edges = Flatten[{stedges, toppart[[2, 1]], bottompart[[2, 1]]}];
coords = CirclePoints[{1,0},Length[vert]];
labpos = Range[1, Length[vert], 2 ^ (d - 1)];
labels = Thread[vert[[labpos]]->fLabel@@@Transpose[{vert,coords}][[labpos]]];
edgestyle = Black;
dstyle = Black;
If[cfunc =!= Automatic,
edgestyle = Flatten[{Table[0, Length[stedges]], toppart[[2, 2]], bottompart[[2, 2]]}];
edgestyle = edgestyle / Max[edgestyle];
edgestyle = Thread[edges -> Flatten[cfunc[1 - #] & /@ edgestyle]];
dstyle = cfunc[1]
];
Graph[vert, edges, nopts, VertexCoordinates->CirclePoints[{1,0},Length[vert]], VertexLabels->labels,
EdgeShapeFunction->(BSplineCurve[{#1[[1]],{0,0},#1[[2]]}, SplineWeights->{2,EuclideanDistance@@#,2}]&),
PerformanceGoal->"Speed", Epilog->{dstyle, Circle}, VertexShapeFunction -> "Point", EdgeStyle -> edgestyle, VertexStyle -> dstyle]
]
Example:
FareyDiagram[4]
FareyDiagram[6, 4, ColorFunction -> Hue,
VertexLabelStyle -> Darker[Red]]
edited 12 hours ago
answered 12 hours ago
halmirhalmir
10.7k2544
10.7k2544
add a comment |
add a comment |
Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.
Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.
Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.
Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
yesterday
1
$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
yesterday
1
$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
yesterday
$begingroup$
Technically this is not a Farey series/sequence $F_n$ of order $n$, which is defined to be all fractions (sometimes restricted to the interval between 0 and 1) with denominator at most $n$. For example 3/8 is present but not 1/8. It's a recursive mediant subdivision. It's related in that in any three successive terms of a Farey sequence, the middle one is the mediant of the other two.
$endgroup$
– Michael E2
10 hours ago