Omar Bongo

Multi tool use

Omar Bongo
Res apud Vicidata repertae:
Nativitas:
30 Decembris 1935, 1935;
BongovilleObitus:
8 Iunii 2009;
BarcinoPatria:
Francia, GaboniaNomen nativum:
Albert-Bernard Bongo
Officium
Officium: President of Gabon, chairperson of the Organisation of African Unity, Vice President of Gabon, Prime Minister of Gabon
Munus: Politicus, Miles
Consociatio
Factio: Gabonese Democratic Party
Religio: Religio Islamica, Secta Sunnitica
Familia
Coniunx: Patience Dabany, Edith Lucie Bongo
Proles: Ali Bongo
Memoria
Laurae: Order of the Equatorial Star, Q3885454, Grand Collar of the Order of Prince Henry, Q16141090, Knight Grand Cross with Collar of the Order of Merit of the Italian Republic
Sepultura: Franceville

Omar Bongo et Ruud Lubbers anno 1984 picti

Omar Bongo et Georgius W. Bush anno 2004 picti
Omar Bongo (natus Albert-Bernard Bongo in Lewai, hodie ad honorem eius Bongoville appellata, die 30 Decembris 1935; mortuus est die 8 Iunii 2009 Barcinone in Hispania) fuit politicus et ab anno 1967 usque ad mortem Gaboniae praeses. Bongo decimus civitatis dux saeculo 20 quod ad diuturnum mandatum fuit. Pater fuit praesidis futuri Ali Bongo.
Bibliographia |
- Reed, Michael C. (1987). "Gabon: A Neo-Colonial Enclave of Enduring French Interest". Journal of Modern African Studies 25 (2): 283–320
Nexus externus |

|
Vicimedia Communia plura habent quae ad Omar Bongo spectant.
|
Omar Bongo pagina interretialis .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Francice)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
Praesides Gabonis
|
|
Leo M’ba 1960 • Omar Bongo 1967 • Rosa Rogombé 2009 • Ali Bongo 2009Opus geopoliticum • Duces civitatum Africanarum hodiernarum
Capsae cognatae: Primi ministri Gabonis
|
|
0wuooZ8g05Pq4EPIUNEcME,GarijHdSJqX oeGTbDmjFGeuJ7mwfkLHEe5ATenEO27nUCaTByxnlRBlYQ SMw,o,vA
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...