keras model only predicts one class for all the test images












0












$begingroup$


I am trying to build an image classification model with 2 classes with (1) or without (0). I can build the model and get an accuracy of 1. which is too good to be true (which is an issue) but when I use predict_generator as I have my images in folders, it only returns 1 class 0 (without class). There seems to be an issue but I can't work it out, i have looked at a number of articles but I still can't fix the issue.



image_shape = (220, 525, 3) #height, width, channels
img_width = 96
img_height = 96
channels = 3

epochs = 10

no_train_images = 11957 #!ls ../data/train/* | wc -l
no_test_images = 652 #!ls ../data/test/* | wc -l
no_valid_images = 6156 #!ls ../data/test/* | wc -l

train_dir = '../data/train/'
test_dir = '../data/test/'
valid_dir = '../data/valid/'

classification_model = Sequential()

# First layer with 2D convolution (32 filters, (3, 3) kernel size 3x3, input_shape=(img_width, img_height, channels))
classification_model.add(Conv2D(32, (3, 3), input_shape=input_shape))
# Activation Function = ReLu increases the non-linearity
classification_model.add(Activation('relu'))
# Max-Pooling layer with the size of the grid 2x2
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
# Randomly disconnets some nodes between this layer and the next
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(32, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.25))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.3))

classification_model.add(Flatten())
classification_model.add(Dense(64))
classification_model.add(Activation('relu'))
classification_model.add(Dropout(0.5))
classification_model.add(Dense(1))
classification_model.add(Activation('sigmoid'))

# Using binary_crossentropy as we only have 2 classes
classification_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])



batch_size = 32

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
zoom_range=0.2)

# this is the augmentation configuration we will use for testing:
# only rescaling
valid_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator()

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = True)

valid_generator = valid_datagen.flow_from_directory(
valid_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = False)

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size = (img_width, img_height),
batch_size = 1,
class_mode = None,
shuffle = False)

mpd = classification_model.fit_generator(
train_generator,
steps_per_epoch = no_train_images // batch_size, # number of images per epoch
epochs = epochs, # number of iterations over the entire data
validation_data = valid_generator,
validation_steps = no_valid_images // batch_size)


Epoch 1/10
373/373 [==============================] - 119s 320ms/step - loss: 0.5214 - acc: 0.7357 - val_loss: 0.2720 - val_acc: 0.8758



Epoch 2/10
373/373 [==============================] - 120s 322ms/step - loss: 0.2485 - acc: 0.8935 - val_loss: 0.0568 - val_acc: 0.9829



Epoch 3/10
373/373 [==============================] - 130s 350ms/step - loss: 0.1427 - acc: 0.9435 - val_loss: 0.0410 - val_acc: 0.9796



Epoch 4/10
373/373 [==============================] - 127s 341ms/step - loss: 0.1053 - acc: 0.9623 - val_loss: 0.0197 - val_acc: 0.9971



Epoch 5/10
373/373 [==============================] - 126s 337ms/step - loss: 0.0817 - acc: 0.9682 - val_loss: 0.0136 - val_acc: 0.9948



Epoch 6/10
373/373 [==============================] - 123s 329ms/step - loss: 0.0665 - acc: 0.9754 - val_loss: 0.0116 - val_acc: 0.9985



Epoch 7/10
373/373 [==============================] - 140s 376ms/step - loss: 0.0518 - acc: 0.9817 - val_loss: 0.0035 - val_acc: 0.9997



Epoch 8/10
373/373 [==============================] - 144s 386ms/step - loss: 0.0539 - acc: 0.9832 - val_loss: 8.9459e-04 - val_acc: 1.0000



Epoch 9/10
373/373 [==============================] - 122s 327ms/step - loss: 0.0434 - acc: 0.9850 - val_loss: 0.0023 - val_acc: 0.9997



Epoch 10/10
373/373 [==============================] - 125s 336ms/step - loss: 0.0513 - acc: 0.9844 - val_loss: 0.0014 - val_acc: 1.0000



valid_generator.batch_size=1
score = classification_model.evaluate_generator(valid_generator,
no_test_images/batch_size, pickle_safe=False)
test_generator.reset()
scores=classification_model.predict_generator(test_generator, len(test_generator))

print("Loss: ", score[0], "Accuracy: ", score[1])

predicted_class_indices=np.argmax(scores,axis=1)
print(predicted_class_indices)

labels = (train_generator.class_indices)
labelss = dict((v,k) for k,v in labels.items())
predictions = [labelss[k] for k in predicted_class_indices]

filenames=test_generator.filenames
results=pd.DataFrame({"Filename":filenames,
"Predictions":predictions})

print(results)


Loss: 5.404246180551993e-06 Accuracy: 1.0



print(predicted_class_indices) - ALL 0



[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]



                              Filename Predictions
0 test_folder/video_3_frame10.jpg without
1 test_folder/video_3_frame1001.jpg without
2 test_folder/video_3_frame1006.jpg without
3 test_folder/video_3_frame1008.jpg without
4 test_folder/video_3_frame1009.jpg without
5 test_folder/video_3_frame1010.jpg without
6 test_folder/video_3_frame1013.jpg without
7 test_folder/video_3_frame1014.jpg without
8 test_folder/video_3_frame1022.jpg without
9 test_folder/video_3_frame1023.jpg without
10 test_folder/video_3_frame103.jpg without
11 test_folder/video_3_frame1036.jpg without
12 test_folder/video_3_frame1039.jpg without
13 test_folder/video_3_frame104.jpg without
14 test_folder/video_3_frame1042.jpg without
15 test_folder/video_3_frame1043.jpg without
16 test_folder/video_3_frame1048.jpg without
17 test_folder/video_3_frame105.jpg without
18 test_folder/video_3_frame1051.jpg without
19 test_folder/video_3_frame1052.jpg without
20 test_folder/video_3_frame1054.jpg without
21 test_folder/video_3_frame1055.jpg without
22 test_folder/video_3_frame1057.jpg without
23 test_folder/video_3_frame1059.jpg without
24 test_folder/video_3_frame1060.jpg without


...just some of the outputs but all 650+ are without class.



This is the output and as you can see all the predicted values are 0 for the without class.



This is my first attempt at using Keras and CNN so any help would be really appreciated.










share|improve this question







New contributor




vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    You are overfitting badly(data is scarce I assume, use Augmentations or download similar images and expand)
    $endgroup$
    – Aditya
    yesterday












  • $begingroup$
    @Aditya I have augmented my images using cv2 in a different script such as flipping images, brightness and this was before I knew you could do the same using the ImageDataGenerator but thanks. Any idea why there is only one class being predicted. I have more than 13000 images for training and 6000 for valid.
    $endgroup$
    – vis7
    yesterday










  • $begingroup$
    What do your images represent? Are your images separated into folders for train and val splits?
    $endgroup$
    – Antonio Jurić
    20 hours ago










  • $begingroup$
    @AntonioJurić The images represent someone with and without a football. The directory structure for both train and valid is the following. Train->without->image1, image2 ->with->image4, image5 Valid->without->image3, image6 ->with->image0, image7
    $endgroup$
    – vis7
    18 hours ago


















0












$begingroup$


I am trying to build an image classification model with 2 classes with (1) or without (0). I can build the model and get an accuracy of 1. which is too good to be true (which is an issue) but when I use predict_generator as I have my images in folders, it only returns 1 class 0 (without class). There seems to be an issue but I can't work it out, i have looked at a number of articles but I still can't fix the issue.



image_shape = (220, 525, 3) #height, width, channels
img_width = 96
img_height = 96
channels = 3

epochs = 10

no_train_images = 11957 #!ls ../data/train/* | wc -l
no_test_images = 652 #!ls ../data/test/* | wc -l
no_valid_images = 6156 #!ls ../data/test/* | wc -l

train_dir = '../data/train/'
test_dir = '../data/test/'
valid_dir = '../data/valid/'

classification_model = Sequential()

# First layer with 2D convolution (32 filters, (3, 3) kernel size 3x3, input_shape=(img_width, img_height, channels))
classification_model.add(Conv2D(32, (3, 3), input_shape=input_shape))
# Activation Function = ReLu increases the non-linearity
classification_model.add(Activation('relu'))
# Max-Pooling layer with the size of the grid 2x2
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
# Randomly disconnets some nodes between this layer and the next
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(32, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.25))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.3))

classification_model.add(Flatten())
classification_model.add(Dense(64))
classification_model.add(Activation('relu'))
classification_model.add(Dropout(0.5))
classification_model.add(Dense(1))
classification_model.add(Activation('sigmoid'))

# Using binary_crossentropy as we only have 2 classes
classification_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])



batch_size = 32

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
zoom_range=0.2)

# this is the augmentation configuration we will use for testing:
# only rescaling
valid_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator()

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = True)

valid_generator = valid_datagen.flow_from_directory(
valid_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = False)

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size = (img_width, img_height),
batch_size = 1,
class_mode = None,
shuffle = False)

mpd = classification_model.fit_generator(
train_generator,
steps_per_epoch = no_train_images // batch_size, # number of images per epoch
epochs = epochs, # number of iterations over the entire data
validation_data = valid_generator,
validation_steps = no_valid_images // batch_size)


Epoch 1/10
373/373 [==============================] - 119s 320ms/step - loss: 0.5214 - acc: 0.7357 - val_loss: 0.2720 - val_acc: 0.8758



Epoch 2/10
373/373 [==============================] - 120s 322ms/step - loss: 0.2485 - acc: 0.8935 - val_loss: 0.0568 - val_acc: 0.9829



Epoch 3/10
373/373 [==============================] - 130s 350ms/step - loss: 0.1427 - acc: 0.9435 - val_loss: 0.0410 - val_acc: 0.9796



Epoch 4/10
373/373 [==============================] - 127s 341ms/step - loss: 0.1053 - acc: 0.9623 - val_loss: 0.0197 - val_acc: 0.9971



Epoch 5/10
373/373 [==============================] - 126s 337ms/step - loss: 0.0817 - acc: 0.9682 - val_loss: 0.0136 - val_acc: 0.9948



Epoch 6/10
373/373 [==============================] - 123s 329ms/step - loss: 0.0665 - acc: 0.9754 - val_loss: 0.0116 - val_acc: 0.9985



Epoch 7/10
373/373 [==============================] - 140s 376ms/step - loss: 0.0518 - acc: 0.9817 - val_loss: 0.0035 - val_acc: 0.9997



Epoch 8/10
373/373 [==============================] - 144s 386ms/step - loss: 0.0539 - acc: 0.9832 - val_loss: 8.9459e-04 - val_acc: 1.0000



Epoch 9/10
373/373 [==============================] - 122s 327ms/step - loss: 0.0434 - acc: 0.9850 - val_loss: 0.0023 - val_acc: 0.9997



Epoch 10/10
373/373 [==============================] - 125s 336ms/step - loss: 0.0513 - acc: 0.9844 - val_loss: 0.0014 - val_acc: 1.0000



valid_generator.batch_size=1
score = classification_model.evaluate_generator(valid_generator,
no_test_images/batch_size, pickle_safe=False)
test_generator.reset()
scores=classification_model.predict_generator(test_generator, len(test_generator))

print("Loss: ", score[0], "Accuracy: ", score[1])

predicted_class_indices=np.argmax(scores,axis=1)
print(predicted_class_indices)

labels = (train_generator.class_indices)
labelss = dict((v,k) for k,v in labels.items())
predictions = [labelss[k] for k in predicted_class_indices]

filenames=test_generator.filenames
results=pd.DataFrame({"Filename":filenames,
"Predictions":predictions})

print(results)


Loss: 5.404246180551993e-06 Accuracy: 1.0



print(predicted_class_indices) - ALL 0



[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]



                              Filename Predictions
0 test_folder/video_3_frame10.jpg without
1 test_folder/video_3_frame1001.jpg without
2 test_folder/video_3_frame1006.jpg without
3 test_folder/video_3_frame1008.jpg without
4 test_folder/video_3_frame1009.jpg without
5 test_folder/video_3_frame1010.jpg without
6 test_folder/video_3_frame1013.jpg without
7 test_folder/video_3_frame1014.jpg without
8 test_folder/video_3_frame1022.jpg without
9 test_folder/video_3_frame1023.jpg without
10 test_folder/video_3_frame103.jpg without
11 test_folder/video_3_frame1036.jpg without
12 test_folder/video_3_frame1039.jpg without
13 test_folder/video_3_frame104.jpg without
14 test_folder/video_3_frame1042.jpg without
15 test_folder/video_3_frame1043.jpg without
16 test_folder/video_3_frame1048.jpg without
17 test_folder/video_3_frame105.jpg without
18 test_folder/video_3_frame1051.jpg without
19 test_folder/video_3_frame1052.jpg without
20 test_folder/video_3_frame1054.jpg without
21 test_folder/video_3_frame1055.jpg without
22 test_folder/video_3_frame1057.jpg without
23 test_folder/video_3_frame1059.jpg without
24 test_folder/video_3_frame1060.jpg without


...just some of the outputs but all 650+ are without class.



This is the output and as you can see all the predicted values are 0 for the without class.



This is my first attempt at using Keras and CNN so any help would be really appreciated.










share|improve this question







New contributor




vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    You are overfitting badly(data is scarce I assume, use Augmentations or download similar images and expand)
    $endgroup$
    – Aditya
    yesterday












  • $begingroup$
    @Aditya I have augmented my images using cv2 in a different script such as flipping images, brightness and this was before I knew you could do the same using the ImageDataGenerator but thanks. Any idea why there is only one class being predicted. I have more than 13000 images for training and 6000 for valid.
    $endgroup$
    – vis7
    yesterday










  • $begingroup$
    What do your images represent? Are your images separated into folders for train and val splits?
    $endgroup$
    – Antonio Jurić
    20 hours ago










  • $begingroup$
    @AntonioJurić The images represent someone with and without a football. The directory structure for both train and valid is the following. Train->without->image1, image2 ->with->image4, image5 Valid->without->image3, image6 ->with->image0, image7
    $endgroup$
    – vis7
    18 hours ago
















0












0








0





$begingroup$


I am trying to build an image classification model with 2 classes with (1) or without (0). I can build the model and get an accuracy of 1. which is too good to be true (which is an issue) but when I use predict_generator as I have my images in folders, it only returns 1 class 0 (without class). There seems to be an issue but I can't work it out, i have looked at a number of articles but I still can't fix the issue.



image_shape = (220, 525, 3) #height, width, channels
img_width = 96
img_height = 96
channels = 3

epochs = 10

no_train_images = 11957 #!ls ../data/train/* | wc -l
no_test_images = 652 #!ls ../data/test/* | wc -l
no_valid_images = 6156 #!ls ../data/test/* | wc -l

train_dir = '../data/train/'
test_dir = '../data/test/'
valid_dir = '../data/valid/'

classification_model = Sequential()

# First layer with 2D convolution (32 filters, (3, 3) kernel size 3x3, input_shape=(img_width, img_height, channels))
classification_model.add(Conv2D(32, (3, 3), input_shape=input_shape))
# Activation Function = ReLu increases the non-linearity
classification_model.add(Activation('relu'))
# Max-Pooling layer with the size of the grid 2x2
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
# Randomly disconnets some nodes between this layer and the next
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(32, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.25))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.3))

classification_model.add(Flatten())
classification_model.add(Dense(64))
classification_model.add(Activation('relu'))
classification_model.add(Dropout(0.5))
classification_model.add(Dense(1))
classification_model.add(Activation('sigmoid'))

# Using binary_crossentropy as we only have 2 classes
classification_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])



batch_size = 32

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
zoom_range=0.2)

# this is the augmentation configuration we will use for testing:
# only rescaling
valid_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator()

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = True)

valid_generator = valid_datagen.flow_from_directory(
valid_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = False)

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size = (img_width, img_height),
batch_size = 1,
class_mode = None,
shuffle = False)

mpd = classification_model.fit_generator(
train_generator,
steps_per_epoch = no_train_images // batch_size, # number of images per epoch
epochs = epochs, # number of iterations over the entire data
validation_data = valid_generator,
validation_steps = no_valid_images // batch_size)


Epoch 1/10
373/373 [==============================] - 119s 320ms/step - loss: 0.5214 - acc: 0.7357 - val_loss: 0.2720 - val_acc: 0.8758



Epoch 2/10
373/373 [==============================] - 120s 322ms/step - loss: 0.2485 - acc: 0.8935 - val_loss: 0.0568 - val_acc: 0.9829



Epoch 3/10
373/373 [==============================] - 130s 350ms/step - loss: 0.1427 - acc: 0.9435 - val_loss: 0.0410 - val_acc: 0.9796



Epoch 4/10
373/373 [==============================] - 127s 341ms/step - loss: 0.1053 - acc: 0.9623 - val_loss: 0.0197 - val_acc: 0.9971



Epoch 5/10
373/373 [==============================] - 126s 337ms/step - loss: 0.0817 - acc: 0.9682 - val_loss: 0.0136 - val_acc: 0.9948



Epoch 6/10
373/373 [==============================] - 123s 329ms/step - loss: 0.0665 - acc: 0.9754 - val_loss: 0.0116 - val_acc: 0.9985



Epoch 7/10
373/373 [==============================] - 140s 376ms/step - loss: 0.0518 - acc: 0.9817 - val_loss: 0.0035 - val_acc: 0.9997



Epoch 8/10
373/373 [==============================] - 144s 386ms/step - loss: 0.0539 - acc: 0.9832 - val_loss: 8.9459e-04 - val_acc: 1.0000



Epoch 9/10
373/373 [==============================] - 122s 327ms/step - loss: 0.0434 - acc: 0.9850 - val_loss: 0.0023 - val_acc: 0.9997



Epoch 10/10
373/373 [==============================] - 125s 336ms/step - loss: 0.0513 - acc: 0.9844 - val_loss: 0.0014 - val_acc: 1.0000



valid_generator.batch_size=1
score = classification_model.evaluate_generator(valid_generator,
no_test_images/batch_size, pickle_safe=False)
test_generator.reset()
scores=classification_model.predict_generator(test_generator, len(test_generator))

print("Loss: ", score[0], "Accuracy: ", score[1])

predicted_class_indices=np.argmax(scores,axis=1)
print(predicted_class_indices)

labels = (train_generator.class_indices)
labelss = dict((v,k) for k,v in labels.items())
predictions = [labelss[k] for k in predicted_class_indices]

filenames=test_generator.filenames
results=pd.DataFrame({"Filename":filenames,
"Predictions":predictions})

print(results)


Loss: 5.404246180551993e-06 Accuracy: 1.0



print(predicted_class_indices) - ALL 0



[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]



                              Filename Predictions
0 test_folder/video_3_frame10.jpg without
1 test_folder/video_3_frame1001.jpg without
2 test_folder/video_3_frame1006.jpg without
3 test_folder/video_3_frame1008.jpg without
4 test_folder/video_3_frame1009.jpg without
5 test_folder/video_3_frame1010.jpg without
6 test_folder/video_3_frame1013.jpg without
7 test_folder/video_3_frame1014.jpg without
8 test_folder/video_3_frame1022.jpg without
9 test_folder/video_3_frame1023.jpg without
10 test_folder/video_3_frame103.jpg without
11 test_folder/video_3_frame1036.jpg without
12 test_folder/video_3_frame1039.jpg without
13 test_folder/video_3_frame104.jpg without
14 test_folder/video_3_frame1042.jpg without
15 test_folder/video_3_frame1043.jpg without
16 test_folder/video_3_frame1048.jpg without
17 test_folder/video_3_frame105.jpg without
18 test_folder/video_3_frame1051.jpg without
19 test_folder/video_3_frame1052.jpg without
20 test_folder/video_3_frame1054.jpg without
21 test_folder/video_3_frame1055.jpg without
22 test_folder/video_3_frame1057.jpg without
23 test_folder/video_3_frame1059.jpg without
24 test_folder/video_3_frame1060.jpg without


...just some of the outputs but all 650+ are without class.



This is the output and as you can see all the predicted values are 0 for the without class.



This is my first attempt at using Keras and CNN so any help would be really appreciated.










share|improve this question







New contributor




vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I am trying to build an image classification model with 2 classes with (1) or without (0). I can build the model and get an accuracy of 1. which is too good to be true (which is an issue) but when I use predict_generator as I have my images in folders, it only returns 1 class 0 (without class). There seems to be an issue but I can't work it out, i have looked at a number of articles but I still can't fix the issue.



image_shape = (220, 525, 3) #height, width, channels
img_width = 96
img_height = 96
channels = 3

epochs = 10

no_train_images = 11957 #!ls ../data/train/* | wc -l
no_test_images = 652 #!ls ../data/test/* | wc -l
no_valid_images = 6156 #!ls ../data/test/* | wc -l

train_dir = '../data/train/'
test_dir = '../data/test/'
valid_dir = '../data/valid/'

classification_model = Sequential()

# First layer with 2D convolution (32 filters, (3, 3) kernel size 3x3, input_shape=(img_width, img_height, channels))
classification_model.add(Conv2D(32, (3, 3), input_shape=input_shape))
# Activation Function = ReLu increases the non-linearity
classification_model.add(Activation('relu'))
# Max-Pooling layer with the size of the grid 2x2
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
# Randomly disconnets some nodes between this layer and the next
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(32, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.2))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.25))

classification_model.add(Conv2D(64, (3, 3)))
classification_model.add(Activation('relu'))
classification_model.add(MaxPooling2D(pool_size=(2, 2)))
classification_model.add(Dropout(0.3))

classification_model.add(Flatten())
classification_model.add(Dense(64))
classification_model.add(Activation('relu'))
classification_model.add(Dropout(0.5))
classification_model.add(Dense(1))
classification_model.add(Activation('sigmoid'))

# Using binary_crossentropy as we only have 2 classes
classification_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])



batch_size = 32

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
zoom_range=0.2)

# this is the augmentation configuration we will use for testing:
# only rescaling
valid_datagen = ImageDataGenerator(rescale=1. / 255)
test_datagen = ImageDataGenerator()

train_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = True)

valid_generator = valid_datagen.flow_from_directory(
valid_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary',
shuffle = False)

test_generator = test_datagen.flow_from_directory(
test_dir,
target_size = (img_width, img_height),
batch_size = 1,
class_mode = None,
shuffle = False)

mpd = classification_model.fit_generator(
train_generator,
steps_per_epoch = no_train_images // batch_size, # number of images per epoch
epochs = epochs, # number of iterations over the entire data
validation_data = valid_generator,
validation_steps = no_valid_images // batch_size)


Epoch 1/10
373/373 [==============================] - 119s 320ms/step - loss: 0.5214 - acc: 0.7357 - val_loss: 0.2720 - val_acc: 0.8758



Epoch 2/10
373/373 [==============================] - 120s 322ms/step - loss: 0.2485 - acc: 0.8935 - val_loss: 0.0568 - val_acc: 0.9829



Epoch 3/10
373/373 [==============================] - 130s 350ms/step - loss: 0.1427 - acc: 0.9435 - val_loss: 0.0410 - val_acc: 0.9796



Epoch 4/10
373/373 [==============================] - 127s 341ms/step - loss: 0.1053 - acc: 0.9623 - val_loss: 0.0197 - val_acc: 0.9971



Epoch 5/10
373/373 [==============================] - 126s 337ms/step - loss: 0.0817 - acc: 0.9682 - val_loss: 0.0136 - val_acc: 0.9948



Epoch 6/10
373/373 [==============================] - 123s 329ms/step - loss: 0.0665 - acc: 0.9754 - val_loss: 0.0116 - val_acc: 0.9985



Epoch 7/10
373/373 [==============================] - 140s 376ms/step - loss: 0.0518 - acc: 0.9817 - val_loss: 0.0035 - val_acc: 0.9997



Epoch 8/10
373/373 [==============================] - 144s 386ms/step - loss: 0.0539 - acc: 0.9832 - val_loss: 8.9459e-04 - val_acc: 1.0000



Epoch 9/10
373/373 [==============================] - 122s 327ms/step - loss: 0.0434 - acc: 0.9850 - val_loss: 0.0023 - val_acc: 0.9997



Epoch 10/10
373/373 [==============================] - 125s 336ms/step - loss: 0.0513 - acc: 0.9844 - val_loss: 0.0014 - val_acc: 1.0000



valid_generator.batch_size=1
score = classification_model.evaluate_generator(valid_generator,
no_test_images/batch_size, pickle_safe=False)
test_generator.reset()
scores=classification_model.predict_generator(test_generator, len(test_generator))

print("Loss: ", score[0], "Accuracy: ", score[1])

predicted_class_indices=np.argmax(scores,axis=1)
print(predicted_class_indices)

labels = (train_generator.class_indices)
labelss = dict((v,k) for k,v in labels.items())
predictions = [labelss[k] for k in predicted_class_indices]

filenames=test_generator.filenames
results=pd.DataFrame({"Filename":filenames,
"Predictions":predictions})

print(results)


Loss: 5.404246180551993e-06 Accuracy: 1.0



print(predicted_class_indices) - ALL 0



[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]



                              Filename Predictions
0 test_folder/video_3_frame10.jpg without
1 test_folder/video_3_frame1001.jpg without
2 test_folder/video_3_frame1006.jpg without
3 test_folder/video_3_frame1008.jpg without
4 test_folder/video_3_frame1009.jpg without
5 test_folder/video_3_frame1010.jpg without
6 test_folder/video_3_frame1013.jpg without
7 test_folder/video_3_frame1014.jpg without
8 test_folder/video_3_frame1022.jpg without
9 test_folder/video_3_frame1023.jpg without
10 test_folder/video_3_frame103.jpg without
11 test_folder/video_3_frame1036.jpg without
12 test_folder/video_3_frame1039.jpg without
13 test_folder/video_3_frame104.jpg without
14 test_folder/video_3_frame1042.jpg without
15 test_folder/video_3_frame1043.jpg without
16 test_folder/video_3_frame1048.jpg without
17 test_folder/video_3_frame105.jpg without
18 test_folder/video_3_frame1051.jpg without
19 test_folder/video_3_frame1052.jpg without
20 test_folder/video_3_frame1054.jpg without
21 test_folder/video_3_frame1055.jpg without
22 test_folder/video_3_frame1057.jpg without
23 test_folder/video_3_frame1059.jpg without
24 test_folder/video_3_frame1060.jpg without


...just some of the outputs but all 650+ are without class.



This is the output and as you can see all the predicted values are 0 for the without class.



This is my first attempt at using Keras and CNN so any help would be really appreciated.







python keras cnn image-classification






share|improve this question







New contributor




vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









vis7vis7

1




1




New contributor




vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






vis7 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    You are overfitting badly(data is scarce I assume, use Augmentations or download similar images and expand)
    $endgroup$
    – Aditya
    yesterday












  • $begingroup$
    @Aditya I have augmented my images using cv2 in a different script such as flipping images, brightness and this was before I knew you could do the same using the ImageDataGenerator but thanks. Any idea why there is only one class being predicted. I have more than 13000 images for training and 6000 for valid.
    $endgroup$
    – vis7
    yesterday










  • $begingroup$
    What do your images represent? Are your images separated into folders for train and val splits?
    $endgroup$
    – Antonio Jurić
    20 hours ago










  • $begingroup$
    @AntonioJurić The images represent someone with and without a football. The directory structure for both train and valid is the following. Train->without->image1, image2 ->with->image4, image5 Valid->without->image3, image6 ->with->image0, image7
    $endgroup$
    – vis7
    18 hours ago




















  • $begingroup$
    You are overfitting badly(data is scarce I assume, use Augmentations or download similar images and expand)
    $endgroup$
    – Aditya
    yesterday












  • $begingroup$
    @Aditya I have augmented my images using cv2 in a different script such as flipping images, brightness and this was before I knew you could do the same using the ImageDataGenerator but thanks. Any idea why there is only one class being predicted. I have more than 13000 images for training and 6000 for valid.
    $endgroup$
    – vis7
    yesterday










  • $begingroup$
    What do your images represent? Are your images separated into folders for train and val splits?
    $endgroup$
    – Antonio Jurić
    20 hours ago










  • $begingroup$
    @AntonioJurić The images represent someone with and without a football. The directory structure for both train and valid is the following. Train->without->image1, image2 ->with->image4, image5 Valid->without->image3, image6 ->with->image0, image7
    $endgroup$
    – vis7
    18 hours ago


















$begingroup$
You are overfitting badly(data is scarce I assume, use Augmentations or download similar images and expand)
$endgroup$
– Aditya
yesterday






$begingroup$
You are overfitting badly(data is scarce I assume, use Augmentations or download similar images and expand)
$endgroup$
– Aditya
yesterday














$begingroup$
@Aditya I have augmented my images using cv2 in a different script such as flipping images, brightness and this was before I knew you could do the same using the ImageDataGenerator but thanks. Any idea why there is only one class being predicted. I have more than 13000 images for training and 6000 for valid.
$endgroup$
– vis7
yesterday




$begingroup$
@Aditya I have augmented my images using cv2 in a different script such as flipping images, brightness and this was before I knew you could do the same using the ImageDataGenerator but thanks. Any idea why there is only one class being predicted. I have more than 13000 images for training and 6000 for valid.
$endgroup$
– vis7
yesterday












$begingroup$
What do your images represent? Are your images separated into folders for train and val splits?
$endgroup$
– Antonio Jurić
20 hours ago




$begingroup$
What do your images represent? Are your images separated into folders for train and val splits?
$endgroup$
– Antonio Jurić
20 hours ago












$begingroup$
@AntonioJurić The images represent someone with and without a football. The directory structure for both train and valid is the following. Train->without->image1, image2 ->with->image4, image5 Valid->without->image3, image6 ->with->image0, image7
$endgroup$
– vis7
18 hours ago






$begingroup$
@AntonioJurić The images represent someone with and without a football. The directory structure for both train and valid is the following. Train->without->image1, image2 ->with->image4, image5 Valid->without->image3, image6 ->with->image0, image7
$endgroup$
– vis7
18 hours ago












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






vis7 is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45833%2fkeras-model-only-predicts-one-class-for-all-the-test-images%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes








vis7 is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















vis7 is a new contributor. Be nice, and check out our Code of Conduct.













vis7 is a new contributor. Be nice, and check out our Code of Conduct.












vis7 is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f45833%2fkeras-model-only-predicts-one-class-for-all-the-test-images%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to label and detect the document text images

Tabula Rosettana

Aureus (color)