Does this formalism adequately describe functions of one variable?












2












$begingroup$


Let $f$ be a function mapping every element of a set $X$ to a unique element denoted by $f(x)$ in a set $Y$.



Can this statement be effectively formalized by




$forall a (ain X implies f(a) in Y)$




What logical aspects of functionality, if any, would not be captured by this statement.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you just mean that $f$ is well-defined (not one-to-many), or that $f$ is a constant function, that is, all elements of $X$ map to the same unique element of $Y$?
    $endgroup$
    – bounceback
    yesterday






  • 2




    $begingroup$
    Seems like you're missing the uniqueness of $f(a)$ given $a$.
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall It is trivial to show that $forall a (ain X implies f(a)=f(a))$
    $endgroup$
    – Dan Christensen
    yesterday










  • $begingroup$
    Why is that? Why can't I have two different $f(a)$'s, each one making your implication true?
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall If $f(a)=b$ and $f(a)=c$, by substitution have $b=c$. Thus $f(a)$ can have only a single value.
    $endgroup$
    – Dan Christensen
    yesterday
















2












$begingroup$


Let $f$ be a function mapping every element of a set $X$ to a unique element denoted by $f(x)$ in a set $Y$.



Can this statement be effectively formalized by




$forall a (ain X implies f(a) in Y)$




What logical aspects of functionality, if any, would not be captured by this statement.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you just mean that $f$ is well-defined (not one-to-many), or that $f$ is a constant function, that is, all elements of $X$ map to the same unique element of $Y$?
    $endgroup$
    – bounceback
    yesterday






  • 2




    $begingroup$
    Seems like you're missing the uniqueness of $f(a)$ given $a$.
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall It is trivial to show that $forall a (ain X implies f(a)=f(a))$
    $endgroup$
    – Dan Christensen
    yesterday










  • $begingroup$
    Why is that? Why can't I have two different $f(a)$'s, each one making your implication true?
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall If $f(a)=b$ and $f(a)=c$, by substitution have $b=c$. Thus $f(a)$ can have only a single value.
    $endgroup$
    – Dan Christensen
    yesterday














2












2








2





$begingroup$


Let $f$ be a function mapping every element of a set $X$ to a unique element denoted by $f(x)$ in a set $Y$.



Can this statement be effectively formalized by




$forall a (ain X implies f(a) in Y)$




What logical aspects of functionality, if any, would not be captured by this statement.










share|cite|improve this question











$endgroup$




Let $f$ be a function mapping every element of a set $X$ to a unique element denoted by $f(x)$ in a set $Y$.



Can this statement be effectively formalized by




$forall a (ain X implies f(a) in Y)$




What logical aspects of functionality, if any, would not be captured by this statement.







functions elementary-set-theory logic






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday







Dan Christensen

















asked yesterday









Dan ChristensenDan Christensen

8,64821835




8,64821835












  • $begingroup$
    Do you just mean that $f$ is well-defined (not one-to-many), or that $f$ is a constant function, that is, all elements of $X$ map to the same unique element of $Y$?
    $endgroup$
    – bounceback
    yesterday






  • 2




    $begingroup$
    Seems like you're missing the uniqueness of $f(a)$ given $a$.
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall It is trivial to show that $forall a (ain X implies f(a)=f(a))$
    $endgroup$
    – Dan Christensen
    yesterday










  • $begingroup$
    Why is that? Why can't I have two different $f(a)$'s, each one making your implication true?
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall If $f(a)=b$ and $f(a)=c$, by substitution have $b=c$. Thus $f(a)$ can have only a single value.
    $endgroup$
    – Dan Christensen
    yesterday


















  • $begingroup$
    Do you just mean that $f$ is well-defined (not one-to-many), or that $f$ is a constant function, that is, all elements of $X$ map to the same unique element of $Y$?
    $endgroup$
    – bounceback
    yesterday






  • 2




    $begingroup$
    Seems like you're missing the uniqueness of $f(a)$ given $a$.
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall It is trivial to show that $forall a (ain X implies f(a)=f(a))$
    $endgroup$
    – Dan Christensen
    yesterday










  • $begingroup$
    Why is that? Why can't I have two different $f(a)$'s, each one making your implication true?
    $endgroup$
    – Randall
    yesterday










  • $begingroup$
    @Randall If $f(a)=b$ and $f(a)=c$, by substitution have $b=c$. Thus $f(a)$ can have only a single value.
    $endgroup$
    – Dan Christensen
    yesterday
















$begingroup$
Do you just mean that $f$ is well-defined (not one-to-many), or that $f$ is a constant function, that is, all elements of $X$ map to the same unique element of $Y$?
$endgroup$
– bounceback
yesterday




$begingroup$
Do you just mean that $f$ is well-defined (not one-to-many), or that $f$ is a constant function, that is, all elements of $X$ map to the same unique element of $Y$?
$endgroup$
– bounceback
yesterday




2




2




$begingroup$
Seems like you're missing the uniqueness of $f(a)$ given $a$.
$endgroup$
– Randall
yesterday




$begingroup$
Seems like you're missing the uniqueness of $f(a)$ given $a$.
$endgroup$
– Randall
yesterday












$begingroup$
@Randall It is trivial to show that $forall a (ain X implies f(a)=f(a))$
$endgroup$
– Dan Christensen
yesterday




$begingroup$
@Randall It is trivial to show that $forall a (ain X implies f(a)=f(a))$
$endgroup$
– Dan Christensen
yesterday












$begingroup$
Why is that? Why can't I have two different $f(a)$'s, each one making your implication true?
$endgroup$
– Randall
yesterday




$begingroup$
Why is that? Why can't I have two different $f(a)$'s, each one making your implication true?
$endgroup$
– Randall
yesterday












$begingroup$
@Randall If $f(a)=b$ and $f(a)=c$, by substitution have $b=c$. Thus $f(a)$ can have only a single value.
$endgroup$
– Dan Christensen
yesterday




$begingroup$
@Randall If $f(a)=b$ and $f(a)=c$, by substitution have $b=c$. Thus $f(a)$ can have only a single value.
$endgroup$
– Dan Christensen
yesterday










3 Answers
3






active

oldest

votes


















5












$begingroup$

For a more or less standard FOL, as is typically used to formalize, e.g., ZFC set theory, writing $f(a)$ already implies that $f$ is a function. Your statement would merely add that the image of $X$ is contained in $Y$. If that's all you want, then this is fine.



Fixing $ain X$, if $f$ is a set-theoretic function, as opposed to a logical function symbol, then $f(a)in Y$ would mean something like $exists yin Y.(a,y)in f$. This would imply $f$ is a total relation on $X$, but not that it is functional which would just add that such a $y$ has to be unique. This is the point of Randall's comments. Without the uniqueness constraint, $f$ could readily be a relation that relates $a$ to multiple elements of $Y$. Your argument that you can "trivially" show $f(a)=f(a)$ doesn't work when $f$ is not a function symbol. There is no term $f(a)$ in this context.1 Instead $f(x)=y$ is interpreted as $(x,y)in f$, so in your case you'd get $f(a)=f(a)$ means $(a,f(a))in f$ means $exists b.(a,b)in fland(a,b)in f$ which is, of course, equivalent to just $exists b.(a,b)in f$ which in no way states that that $b$ is unique.



$f$ may still not be a function since we haven't said anything about how it behaves outside of $X$. You can add an additional constraint: $forall a,b.(a,b)in fimplies ain X$ which would say that $f$ is only "defined" on $X$. In APC89's answer, this is accomplished by requiring $fsubset Xtimes Y$.



If you just want to specify that a binary relation $f$ is a function $X$ to $Y$, then APC89's answer provides the more or less standard definition for this, except for the unnecessary insistence that $X$ and $Y$ be non-empty. (Of course, if $Y$ is empty and $X$ is non-empty, there won't actually be any functions from $X$ to $Y$. On the other hand, $X$ being empty causes no problems at all.)



1 If your logic has a definite description quantifier, you could say it is the term $iota b.(a,b)in f$, but this also would require $f$ to separately be shown to be a functional relation for this to give a useful result.






share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    Given two non-empty sets $A$ and $B$, we say that the binary relation $fsubset Atimes B$ is a function from $A$ to $B$ if and only if
    begin{align*}
    (forall ain A)(exists!bin B)quadtext{such that}quad(a,b)in f
    end{align*}






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I am familiar with the that particular formalism.Could you comment on the one I presented here?
      $endgroup$
      – Dan Christensen
      yesterday












    • $begingroup$
      I guess the heading wasn't very clear. I have changed it.
      $endgroup$
      – Dan Christensen
      yesterday



















    0












    $begingroup$

    If the symbols $f$, $X$, and $Y$ are established to be interpreted so that $f$ is a function and $X,Y$ are sets, then your formalism captures $Xsubseteq mathrm{dom}(f)$ and $mathrm{ran}(fbig|_X)subseteq Y$. It does not establish that $f$ is a function and $X,Y$ are sets---that must be established before writing the formalism.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3119587%2fdoes-this-formalism-adequately-describe-functions-of-one-variable%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      For a more or less standard FOL, as is typically used to formalize, e.g., ZFC set theory, writing $f(a)$ already implies that $f$ is a function. Your statement would merely add that the image of $X$ is contained in $Y$. If that's all you want, then this is fine.



      Fixing $ain X$, if $f$ is a set-theoretic function, as opposed to a logical function symbol, then $f(a)in Y$ would mean something like $exists yin Y.(a,y)in f$. This would imply $f$ is a total relation on $X$, but not that it is functional which would just add that such a $y$ has to be unique. This is the point of Randall's comments. Without the uniqueness constraint, $f$ could readily be a relation that relates $a$ to multiple elements of $Y$. Your argument that you can "trivially" show $f(a)=f(a)$ doesn't work when $f$ is not a function symbol. There is no term $f(a)$ in this context.1 Instead $f(x)=y$ is interpreted as $(x,y)in f$, so in your case you'd get $f(a)=f(a)$ means $(a,f(a))in f$ means $exists b.(a,b)in fland(a,b)in f$ which is, of course, equivalent to just $exists b.(a,b)in f$ which in no way states that that $b$ is unique.



      $f$ may still not be a function since we haven't said anything about how it behaves outside of $X$. You can add an additional constraint: $forall a,b.(a,b)in fimplies ain X$ which would say that $f$ is only "defined" on $X$. In APC89's answer, this is accomplished by requiring $fsubset Xtimes Y$.



      If you just want to specify that a binary relation $f$ is a function $X$ to $Y$, then APC89's answer provides the more or less standard definition for this, except for the unnecessary insistence that $X$ and $Y$ be non-empty. (Of course, if $Y$ is empty and $X$ is non-empty, there won't actually be any functions from $X$ to $Y$. On the other hand, $X$ being empty causes no problems at all.)



      1 If your logic has a definite description quantifier, you could say it is the term $iota b.(a,b)in f$, but this also would require $f$ to separately be shown to be a functional relation for this to give a useful result.






      share|cite|improve this answer











      $endgroup$


















        5












        $begingroup$

        For a more or less standard FOL, as is typically used to formalize, e.g., ZFC set theory, writing $f(a)$ already implies that $f$ is a function. Your statement would merely add that the image of $X$ is contained in $Y$. If that's all you want, then this is fine.



        Fixing $ain X$, if $f$ is a set-theoretic function, as opposed to a logical function symbol, then $f(a)in Y$ would mean something like $exists yin Y.(a,y)in f$. This would imply $f$ is a total relation on $X$, but not that it is functional which would just add that such a $y$ has to be unique. This is the point of Randall's comments. Without the uniqueness constraint, $f$ could readily be a relation that relates $a$ to multiple elements of $Y$. Your argument that you can "trivially" show $f(a)=f(a)$ doesn't work when $f$ is not a function symbol. There is no term $f(a)$ in this context.1 Instead $f(x)=y$ is interpreted as $(x,y)in f$, so in your case you'd get $f(a)=f(a)$ means $(a,f(a))in f$ means $exists b.(a,b)in fland(a,b)in f$ which is, of course, equivalent to just $exists b.(a,b)in f$ which in no way states that that $b$ is unique.



        $f$ may still not be a function since we haven't said anything about how it behaves outside of $X$. You can add an additional constraint: $forall a,b.(a,b)in fimplies ain X$ which would say that $f$ is only "defined" on $X$. In APC89's answer, this is accomplished by requiring $fsubset Xtimes Y$.



        If you just want to specify that a binary relation $f$ is a function $X$ to $Y$, then APC89's answer provides the more or less standard definition for this, except for the unnecessary insistence that $X$ and $Y$ be non-empty. (Of course, if $Y$ is empty and $X$ is non-empty, there won't actually be any functions from $X$ to $Y$. On the other hand, $X$ being empty causes no problems at all.)



        1 If your logic has a definite description quantifier, you could say it is the term $iota b.(a,b)in f$, but this also would require $f$ to separately be shown to be a functional relation for this to give a useful result.






        share|cite|improve this answer











        $endgroup$
















          5












          5








          5





          $begingroup$

          For a more or less standard FOL, as is typically used to formalize, e.g., ZFC set theory, writing $f(a)$ already implies that $f$ is a function. Your statement would merely add that the image of $X$ is contained in $Y$. If that's all you want, then this is fine.



          Fixing $ain X$, if $f$ is a set-theoretic function, as opposed to a logical function symbol, then $f(a)in Y$ would mean something like $exists yin Y.(a,y)in f$. This would imply $f$ is a total relation on $X$, but not that it is functional which would just add that such a $y$ has to be unique. This is the point of Randall's comments. Without the uniqueness constraint, $f$ could readily be a relation that relates $a$ to multiple elements of $Y$. Your argument that you can "trivially" show $f(a)=f(a)$ doesn't work when $f$ is not a function symbol. There is no term $f(a)$ in this context.1 Instead $f(x)=y$ is interpreted as $(x,y)in f$, so in your case you'd get $f(a)=f(a)$ means $(a,f(a))in f$ means $exists b.(a,b)in fland(a,b)in f$ which is, of course, equivalent to just $exists b.(a,b)in f$ which in no way states that that $b$ is unique.



          $f$ may still not be a function since we haven't said anything about how it behaves outside of $X$. You can add an additional constraint: $forall a,b.(a,b)in fimplies ain X$ which would say that $f$ is only "defined" on $X$. In APC89's answer, this is accomplished by requiring $fsubset Xtimes Y$.



          If you just want to specify that a binary relation $f$ is a function $X$ to $Y$, then APC89's answer provides the more or less standard definition for this, except for the unnecessary insistence that $X$ and $Y$ be non-empty. (Of course, if $Y$ is empty and $X$ is non-empty, there won't actually be any functions from $X$ to $Y$. On the other hand, $X$ being empty causes no problems at all.)



          1 If your logic has a definite description quantifier, you could say it is the term $iota b.(a,b)in f$, but this also would require $f$ to separately be shown to be a functional relation for this to give a useful result.






          share|cite|improve this answer











          $endgroup$



          For a more or less standard FOL, as is typically used to formalize, e.g., ZFC set theory, writing $f(a)$ already implies that $f$ is a function. Your statement would merely add that the image of $X$ is contained in $Y$. If that's all you want, then this is fine.



          Fixing $ain X$, if $f$ is a set-theoretic function, as opposed to a logical function symbol, then $f(a)in Y$ would mean something like $exists yin Y.(a,y)in f$. This would imply $f$ is a total relation on $X$, but not that it is functional which would just add that such a $y$ has to be unique. This is the point of Randall's comments. Without the uniqueness constraint, $f$ could readily be a relation that relates $a$ to multiple elements of $Y$. Your argument that you can "trivially" show $f(a)=f(a)$ doesn't work when $f$ is not a function symbol. There is no term $f(a)$ in this context.1 Instead $f(x)=y$ is interpreted as $(x,y)in f$, so in your case you'd get $f(a)=f(a)$ means $(a,f(a))in f$ means $exists b.(a,b)in fland(a,b)in f$ which is, of course, equivalent to just $exists b.(a,b)in f$ which in no way states that that $b$ is unique.



          $f$ may still not be a function since we haven't said anything about how it behaves outside of $X$. You can add an additional constraint: $forall a,b.(a,b)in fimplies ain X$ which would say that $f$ is only "defined" on $X$. In APC89's answer, this is accomplished by requiring $fsubset Xtimes Y$.



          If you just want to specify that a binary relation $f$ is a function $X$ to $Y$, then APC89's answer provides the more or less standard definition for this, except for the unnecessary insistence that $X$ and $Y$ be non-empty. (Of course, if $Y$ is empty and $X$ is non-empty, there won't actually be any functions from $X$ to $Y$. On the other hand, $X$ being empty causes no problems at all.)



          1 If your logic has a definite description quantifier, you could say it is the term $iota b.(a,b)in f$, but this also would require $f$ to separately be shown to be a functional relation for this to give a useful result.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 23 hours ago

























          answered 23 hours ago









          Derek ElkinsDerek Elkins

          17k11437




          17k11437























              3












              $begingroup$

              Given two non-empty sets $A$ and $B$, we say that the binary relation $fsubset Atimes B$ is a function from $A$ to $B$ if and only if
              begin{align*}
              (forall ain A)(exists!bin B)quadtext{such that}quad(a,b)in f
              end{align*}






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                I am familiar with the that particular formalism.Could you comment on the one I presented here?
                $endgroup$
                – Dan Christensen
                yesterday












              • $begingroup$
                I guess the heading wasn't very clear. I have changed it.
                $endgroup$
                – Dan Christensen
                yesterday
















              3












              $begingroup$

              Given two non-empty sets $A$ and $B$, we say that the binary relation $fsubset Atimes B$ is a function from $A$ to $B$ if and only if
              begin{align*}
              (forall ain A)(exists!bin B)quadtext{such that}quad(a,b)in f
              end{align*}






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                I am familiar with the that particular formalism.Could you comment on the one I presented here?
                $endgroup$
                – Dan Christensen
                yesterday












              • $begingroup$
                I guess the heading wasn't very clear. I have changed it.
                $endgroup$
                – Dan Christensen
                yesterday














              3












              3








              3





              $begingroup$

              Given two non-empty sets $A$ and $B$, we say that the binary relation $fsubset Atimes B$ is a function from $A$ to $B$ if and only if
              begin{align*}
              (forall ain A)(exists!bin B)quadtext{such that}quad(a,b)in f
              end{align*}






              share|cite|improve this answer









              $endgroup$



              Given two non-empty sets $A$ and $B$, we say that the binary relation $fsubset Atimes B$ is a function from $A$ to $B$ if and only if
              begin{align*}
              (forall ain A)(exists!bin B)quadtext{such that}quad(a,b)in f
              end{align*}







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered yesterday









              APC89APC89

              2,443420




              2,443420












              • $begingroup$
                I am familiar with the that particular formalism.Could you comment on the one I presented here?
                $endgroup$
                – Dan Christensen
                yesterday












              • $begingroup$
                I guess the heading wasn't very clear. I have changed it.
                $endgroup$
                – Dan Christensen
                yesterday


















              • $begingroup$
                I am familiar with the that particular formalism.Could you comment on the one I presented here?
                $endgroup$
                – Dan Christensen
                yesterday












              • $begingroup$
                I guess the heading wasn't very clear. I have changed it.
                $endgroup$
                – Dan Christensen
                yesterday
















              $begingroup$
              I am familiar with the that particular formalism.Could you comment on the one I presented here?
              $endgroup$
              – Dan Christensen
              yesterday






              $begingroup$
              I am familiar with the that particular formalism.Could you comment on the one I presented here?
              $endgroup$
              – Dan Christensen
              yesterday














              $begingroup$
              I guess the heading wasn't very clear. I have changed it.
              $endgroup$
              – Dan Christensen
              yesterday




              $begingroup$
              I guess the heading wasn't very clear. I have changed it.
              $endgroup$
              – Dan Christensen
              yesterday











              0












              $begingroup$

              If the symbols $f$, $X$, and $Y$ are established to be interpreted so that $f$ is a function and $X,Y$ are sets, then your formalism captures $Xsubseteq mathrm{dom}(f)$ and $mathrm{ran}(fbig|_X)subseteq Y$. It does not establish that $f$ is a function and $X,Y$ are sets---that must be established before writing the formalism.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                If the symbols $f$, $X$, and $Y$ are established to be interpreted so that $f$ is a function and $X,Y$ are sets, then your formalism captures $Xsubseteq mathrm{dom}(f)$ and $mathrm{ran}(fbig|_X)subseteq Y$. It does not establish that $f$ is a function and $X,Y$ are sets---that must be established before writing the formalism.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  If the symbols $f$, $X$, and $Y$ are established to be interpreted so that $f$ is a function and $X,Y$ are sets, then your formalism captures $Xsubseteq mathrm{dom}(f)$ and $mathrm{ran}(fbig|_X)subseteq Y$. It does not establish that $f$ is a function and $X,Y$ are sets---that must be established before writing the formalism.






                  share|cite|improve this answer









                  $endgroup$



                  If the symbols $f$, $X$, and $Y$ are established to be interpreted so that $f$ is a function and $X,Y$ are sets, then your formalism captures $Xsubseteq mathrm{dom}(f)$ and $mathrm{ran}(fbig|_X)subseteq Y$. It does not establish that $f$ is a function and $X,Y$ are sets---that must be established before writing the formalism.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 17 hours ago









                  Alberto TakaseAlberto Takase

                  2,260619




                  2,260619






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3119587%2fdoes-this-formalism-adequately-describe-functions-of-one-variable%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to label and detect the document text images

                      Tabula Rosettana

                      Aureus (color)