Templum in antis

Multi tool use
Templum in antis sive aedes in antis[1] est forma antiquissima simplicissimaque templi Graeci. Ex conclavi rectangulari (cella) cum porticu (pronaos) constat. Pronaos ex antis et duobus columnis interpositis formatur. Templo in antis est contignatio frontem et latera longiora circumcurrens, epistylio saepe lapidum tabulatu commutato. Contra contignatio peripteri plerumque ad pronai antas finem capit. Exempla templi in antis Graeca sunt Thesaurus Athenarum Delphis vel templum Dionysi Mileti. Etiam Romani hanc architecturae formam receperunt et ubique Imperii Romani diffuderunt.
Templum, cui sunt antae etiam in parte aversa, quae ibi opisthodomum formant, Templum in antis anceps nominatur. Si columnae inter antas desunt, tale templum Graece astylos vocatur.
Vitruvius loco citato de templo in antis scribit:
- In antis erit aedes, cum habebit in fronte antas parietum qui cellam circumcludunt, et inter antas in medio columnas duas supraque fastigium symmetria ea conlocatum, quae in hoc libro fuerit perscripta. Huius autem exemplar erit ad tres Fortunas ex tribus quod est proxime portam Collinam.
Thesaurus Athenarum Delphis.
Bibliographia |
- Gottfried Gruben: Die Tempel der Griechen. Hirmer, Monaci 2001 (5. Ed.), ISBN 3-777-48460-1
- Heiner Knell: Architektur der Griechen: Grundzüge. Wiss. Buchges., Darmstadiae 1988, ISBN 3-534-80028-1
- Wolfgang Müller-Wiener, Griechisches Bauwesen in der Antike. C.H.Beck, Monaci 1988, ISBN 3-406-32993-4
Notae |
q,yl0nsjT9 g6,FelC9YxD0buc38oEM0Hp,uEaBxwJDm whaP64o3lCWbzL5GS
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...