Sesarmidae

Multi tool use
Sesarmidae
|

|
Chiromantes haematocheir
|
Taxinomia
|
Regnum:
|
Animalia
|
Phylum:
|
Arthropoda
|
Subphylum:
|
Crustacea
|
Classis:
|
Malacostraca
|
Ordo:
|
Decapoda
|
Infraordo:
|
Brachyura
|
Superfamilia:
|
Grapsoidea
|
Familia:
|
Sesarmidae Dana, 1851
|
Sesarmidae sunt familia brachyurorum, inter Grapsoidea a multis auctoribus antea descripta. Nonnullae species inter Geosesarmam, Metopauliadem, et Sesarmam sunt veri cancri terrestres, qui ad mare ad procreandum redire non debent.[1]
Genera |
Familiae sunt genera sequentia:[2]
- Aratus
- Armases
- Bresedium
- Chiromantes
- Clistocoeloma
- Episesarma
- Geosesarma
- Haberma
- Karstarma
- Labuanium
- Metagrapsus
- Metasesarma
- Metopaulias
- Muradium
- Namlacium
- Nanosesarma
- Neosarmatium
- Neosesarma
- Parasesarma
- Perisesarma
- Pseudosesarma
- Sarmatium
- Scandarma
- Selatium
- Sesarma
- Sesarmoides
- Sesarmops
- Stelgistra
- Tiomanum
Genera Chiromantes, Parasesarma, Pseudosesarma, et Sesarmops ut videntur non sunt monophyletica. Scandarma fortasse est synonymum iunius (Anglice: junior synonym) alicuius generis.[1][3]
Species selectae |
- Chiromantes dehaani
- Chiromantes haematocheir
- Parasesarma erythrodactyla
- Parasesarma pictum
Notae |

|
Vicimedia Communia plura habent quae ad Sesarmidae spectant.
|
↑ 1.01.1 Christoph D. Schubart, Hung-Chand Liu & José A. Cuesta (2003). "A new genus and species of tree-climbing crab (Crustacea: Brachyura: Sesarmidae) from Taiwan with notes on its ecology and larval morphology". Raffles Bulletin of Zoology 51 (1): 49–59 ,
↑ Peter K. L. Ng, Danièle Guinot & Peter J. F. Davie (2008). "Systema Brachyurorum: Part I. An annotated checklist of extant Brachyuran crabs of the world". Raffles Bulletin of Zoology 17: 1–286 .
↑ Christoph D. Schubart, S. Cannicci, M. Vannini & S. Fratini (2006). "Molecular phylogeny of grapsoid crabs (Decapoda, Brachyura) and allies based on two mitochondrial genes and a proposal for refraining from current superfamily classification". Journal of Zoological Systematics and Evolutionary Research 44 (3): 193–199 ,
U3lQ,vKE,25d3Na6UuMuXfo,8IweCijqbt2jWx2R,zSn M5inw,vTp3g06EHwWXxcMf xn0clNkTbRBYYZ7,6QKp,SS7A5OOBfVfYY3OD
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...