Pax (Bolivia)

Multi tool use
Coordinata: .mw-parser-output .geo-default,.mw-parser-output .geo-dms,.mw-parser-output .geo-dec{display:inline}.mw-parser-output .geo-nondefault,.mw-parser-output .geo-multi-punct{display:none}.mw-parser-output .longitude,.mw-parser-output .latitude{white-space:nowrap}
16°30′S 68°9′W / 16.5°S 68.15°W / -16.5; -68.15

Pax (Bolivia)
Res apud Vicidata repertae:
Civitas:
BoliviaLocus:
16°29′39″S 68°8′51″WNumerus incolarum:
757 184Zona horaria:
UTC-4Situs interretialis
Nomen officiale:
La Paz, Chuqiyapu
Gubernium
Praefectus: Luis Revilla
Geographia
Superficies: 472±1 chiliometrum quadratum, 187.24 chiliometrum quadratum
Coniunctiones urbium
Urbes gemellae: Caracae, Emerita, Paulopolis, Arica, Calama, Hannovera, Zagrabia, Vasingtonia, Bonna, Moscua, Dalian, Bauzanum, Ensenada, Denverium, Cuscum, Corum, Dulcis Vallis, Taipeia, Caesaraugusta, Matritum, Punum, Mexicopolis, Urbs Sancti Iacobi, Urbs Fluminensis, Dominicopolis, Arequipa, Armenia, Assumptio, Bogota, Canelones, Bonaëropolis, Holmia, Iquique, Havana, Londinium, Urbs Montis Videi, Moquegua, Novum Eboracum, Quitum
Pax[1][2][3] (Hispanice La Paz), seu civitas Pacensis in Bolivia,[4] est urbs Boliviana, anno 1548 a Hispanicis condita. Pax est sedes regiminis nationalis; urbes autem capitalis est Sucre. Urbi Pacensi 877 363 incolarum anno 2008 erant.
Notae |

Despectus in urbem nocturnus
↑ "Pax" s.v. "Peruvia" in Iohannes Iacobus Hofmannus, Lexicon universale (1698) ~; "Paz: Pax. Petite ville de l'Amérique Méridionale" (vide p. 750 apud Google Books).
↑ Nomen adiectivum: "Pacensis":
"Archidioecesis Pacensis in Bolivia" e The Hierarchy of the Catholic Church (situs a Davide M. Cheney elaboratus) .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Anglice).
↑ "Paxia": Albert Sleumer, Kirchenlateinisches Wörterbuch (ISBN 3-487-09374-X) p. 588 . "Pacispolis": Ephemeris.
↑ "Pacensis civ. in Bolivia": J. G. Th. Graesse, Orbis Latinus (Dresdae: Schönfeld, 1861; 1909. Brunsvici, 1972, 3 voll.) 1 2 3
Nexus interni
Nexus externi |

|
Vicimedia Communia plura habent quae ad urbem Pacensem spectant.
|
9 Nhu uxaa70hYIIwYK1 c4XpDOUqQj4CFBPT ewgJnaNTnG1Nn8ZtpObVzStd,JM vXKPc7K,VATz8KkdKbtKKVp
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...