Ideologia viridis

Multi tool use
Unam legis e paginis de
civilitate
disserentibus
Formae administrationis
- Anarchia
Democratia
- Foederatio
- Dictatura
Monarchia/Regnum
- Monarchia constitutionalis
- Monarchia hereditaria
Res publica
- Respublica parlamentaria
- Respublica praesidentialis
- Oligarchia
Tituli ductorum
Dux civitatis
- Praeses
- Imperator
- Sultanus
- Rex
- Tzar
Dux rectionis
- Primus minister
- Praeses consilii ministrorum
- Caesar (titulus)
- Dictator
- Amiralis
- Princeps
- Senator
- Sachus
- Tyrannis
- Bassa
- Beigus
- Calipha
- Chanis
- Comes
- Consul
- Lictor
- Nomarcha
- Pharao
- Sachus
- Thainus
- Tribunus plebis
- Vaivoda
- Vezirus
Ideologiae
- Anarchismus
- Capitalismus
- Conservatismus
- Cosmopolitanismus
- Fascismus
- Imperialismus
- Liberalismus
- Nationalismus
Socialismus
- Democratia socialis
- Socialismus saeculi 21
- Communismus
- Ideologia viridis
- Statismus
Trias politica
Potestas legifera
- Potestas exsecutiva
- Potestas iudicialis
Factiones
Index
- per civitates digestae
- per ideologias digestae
Vide etiam
Civitas sui iuris · Rectio · Maiestas · Titulus
Ideologia viridis est ideologia politica pro protectione naturae et progressu sustinendi. Saepe etiam pacifismum, iura animalium et feminismum postulat.
Index factionum |
Foedus 90/Virides Germaniae
Foedus viridium Italiae
- Factio viridis Helvetiae
Factio viridis Norvegiae
Virides – Optio viridis Austriae
Nexus interni
- Anticapitalismus
- Motus antiglobalisticus
- Decrementum
- Ideologia
- Oecologia
- Civilitas
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec pagina est stipula. Amplifica, si potes!
|
fy9gNeVrOr Tg1kJtiM5XEVTVdM,mnQQ,g5CK27fMB6mX jnSxeAw2b,Z Z6fBTvs6 yKMr
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...