Taur Matan Ruak

Multi tool use

Taur Matan Ruak
Res apud Vicidata repertae:
Nativitas:
10 Octobris 1956;
Q2034715Patria:
Timora Orientalis
Officium
Officium: Member of the National Parliament of East Timor, Prime Minister of East Timor, President of East Timor
Munus: Politicus
Consociatio
Factio: People's Liberation Party
Religio: Ecclesia Catholica Romana

Taur Matan Ruak, dux exercitus Timorae Orientalis, mense Decembri 2009 pictus
Taur Matan Ruak (ita nomine bellico appellatus, sed nomine nativo José Maria Vasconcelos) (natus apud Osso Huna pagi Baguia die 10 Octobris 1956), est politicus Timorae Orientalis. Annis 1976-2002 contra obsessores Indonesios militavit. E die 20 Maii 2012 est praeses patriae, successor Iosepho Ramos-Horta.
Bibliographia |
- "L'ONU salue l'élection au Timor-Leste" in Le Figaro (19 Martii 2012)
Nexus externi |

|
Vicimedia Communia plura habent quae ad Taur Matan Ruak spectant.
|
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
Praesides Timorae Orientalis
|
|
Xanana Gusmão 2002 • Iosephus Ramos-Horta 2007 • Taur Matan Ruak 2012 • Franciscus Guterres 2017Opus geopoliticum • Duces civitatum Asiaticarum hodiernarum
Capsae cognatae: Primi ministri Timorae Orientalis
|
|
Primi ministri Timorae Orientalis
|
|
Mari Alkatiri • Iosephus Ramos-Horta • Stanislaus da Silva • Xanana Gusmão • Rui Maria de Araújo • Mari Alkatiri • Taur Matan RuakOpus geopoliticum • Gubernatores civitatum Asiaticarum hodiernarum
Capsae cognatae: Praesides Timorae Orientalis • Ministri rerum externarum Timorae Orientalis
|
|
jseJ44 FEIm
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...