Gerardus Magnus

Multi tool use
Gerardus Magnus (Lingua Batava: Geert Groote; natus anno 1340 Daventriae; mortuus die 20 Augusti anni 1384 ibidem) fuit theologus Nederlandiae.
Gerardus Daventriae et postea in Universitate Parisiensi eruditus est.
Imprimis litterae Augustini (354-430) et Bernardi Claraevallensis (1090-1153) magnam vim ad eum afferebant; magister eius fuit Ioannes Rusbrochius.[1]
Post plures annos luxuria actos anno 1374 animum ad Deum convertit - forse ab amico suo Henricus Calcariensis, monacho Cartusiano, commotus. Nonnullos annos in monasterio Arecanensi vixit, deinde munere praedicandi functus est, ut alios (praecipue clericos divites vel maritos) ad "rectam viam" reduceret.
Numerosi assectatores disciplinam Devotionis modernae formaverunt, ex qua communitates Fratrum a Vita Communi et Congregationis Windeshemensis apud Svollam ortae sunt.
Liber maximi momenti hac in communitate conscriptus De Imitatione Christi intitulatus est, Thomas a Kempis auctore.
Gerardi persuasiones, imprimis de matrimonio cleroque, eum episcopo inimicum reddidit, qui eum praedicare vetuit. Itaque persuasiones suas sermonibus privatis litterisque divulgabat. Missale Latinum in Linguam Batavam vertit.
In ecclesiis Evangelicis die 21 Augusti memoratur.
Bibliographia |
- Jacob Cornelis van Slee: Groote, Gerhard. In: Allgemeine Deutsche Biographie (ADB). Band 9, Duncker & Humblot, Leipzig 1879, S. 730–733.
Notae |
↑ Ruggiero Romano / Alberto Tenenti: Die Grundlegeung der modernen Welt. Spätmittelalter, Renaissance, Reformation. Fischer Weltgeschichte Band 12. Francoforti 1994, p. 108.
uJzUFTkJVrkKVV,3,diUQ7NVo,LZ,6JQ4gYm7xbNvxnYh
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...