Basilius Trediacovensis

Multi tool use

Basilius Trediacovensis
Res apud Vicidata repertae:
Nativitas:
22 Februarii 1703;
AstrachanumObitus:
6 Augusti 1769;
PetropolisPatria:
Imperium Russicum
Officium
Munus: Poëta, Scriptor, Interpres
Memoria
Sepultura: Smolensky Cemetery
Basilius Cyrilli filius Trediacovensis[1] (Russice Василий Кириллович Тредиаковский (Тредьяковский), tr. Vasilij Kirillovič Trediakovskij (Tred'jakovskij); 5 Martii 1703 – 17 Augusti 1769) erat poeta et scriptor, interpres atque theoreticus litterarum Russicus.
Filius sacerdotis, Basilius Trediacovensis annis 1723–1726 in Academia Slavo-Graeco-Latina Moscuensi, et annis 1727–1730 in Universitate Parisiensi studebat. Ab anno 1732 interpres apud Academiam Scientiarum Petropolitanam, annis 1745–1759 academicus illius erat.
Trediacovensis, una cum Michaele Lomonosov, conditor fuit versus accentualis-syllabici Russici, cuius regula elaboravit et descripsit in tractatu suo nomine Nova et brevis via ad compositionem versuum Russicorum («Новый и краткий способ к сложению стихов Российских»), anno 1735 in lucem edito. Dialogus de orthographia («Разговор об ортографии») eius, quem anno 1748 publicavit, est primum studium phoneticae linguae Russicae. Les aventures de Télémaque, mythistoriam a Francisco Fénelon oratione soluta scriptam, hexametris vertit et Tilemachidem[2] nomen dedit, quae Tilemachis carmen epicum Russicum hexametricum primum fuit.
Notae |
↑ La revue russe, p. 45
↑ Tilemachis de nomine "Τηλέμαχος" secundum Reuchlinem lecto.
Nexus externi |

|
Vicimedia Communia plura habent quae ad Basilium Trediacovensem spectant.
|

|
Lexici biographici: • Большая российская энциклопедия • Encyclopædia Britannica
|
Pagina de Basilio Trediacovensi Encyclopaediae Sovieticae Magnae editionis tertiae .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Russice)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad scriptorem spectat. Amplifica, si potes!
|
mJPPT6qIO AZBa3FrtM8qZQheukqiKO338eappjmMaELHSeX9 h,xgL9jOtGGijN2KXa
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...