Complex Value Neural Network use .csv
$begingroup$
This is the part of my program in python :
--> Path of input data and output data for learning
training_data = 'training_data.csv'
training_data_name = 'training_data'
--> csv Skip the first line, which is the load header, and skip it
training_data = np.genfromtxt(training_data, delimiter=",", skip_header=1, dtype='float32')
training_input_data = training_data[:, :n_Input]
training_output_data = training_data[:, n_Input:]
real_col = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]
imag_col = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]
real_col_out = [0]
imag_col_out = [1]
training_real_input = training_input_data[:, real_col]
training_imag_input = training_input_data[:, imag_col]
training_real_output = training_output_data[:, real_col_out]
training_imag_output = training_output_data[:, imag_col_out]
-->From up prog, I want to relation complex value .csv in python.
This down program if I use just array or constant value is success,
but if I want relation from .csv can not run.
real_input = tf.constant(real_col)
imag_input = tf.constant(imag_col)
tf.complex(real_input, imag_input)
real_output = tf.constant(real_col_out)
imag_output = tf.constant(imag_col_out)
tf.complex(real_output, imag_output)
--> How to relation .csv and tensorflow in complex value?
I hope all of you can help me...
Thank you
python
New contributor
$endgroup$
add a comment |
$begingroup$
This is the part of my program in python :
--> Path of input data and output data for learning
training_data = 'training_data.csv'
training_data_name = 'training_data'
--> csv Skip the first line, which is the load header, and skip it
training_data = np.genfromtxt(training_data, delimiter=",", skip_header=1, dtype='float32')
training_input_data = training_data[:, :n_Input]
training_output_data = training_data[:, n_Input:]
real_col = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]
imag_col = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]
real_col_out = [0]
imag_col_out = [1]
training_real_input = training_input_data[:, real_col]
training_imag_input = training_input_data[:, imag_col]
training_real_output = training_output_data[:, real_col_out]
training_imag_output = training_output_data[:, imag_col_out]
-->From up prog, I want to relation complex value .csv in python.
This down program if I use just array or constant value is success,
but if I want relation from .csv can not run.
real_input = tf.constant(real_col)
imag_input = tf.constant(imag_col)
tf.complex(real_input, imag_input)
real_output = tf.constant(real_col_out)
imag_output = tf.constant(imag_col_out)
tf.complex(real_output, imag_output)
--> How to relation .csv and tensorflow in complex value?
I hope all of you can help me...
Thank you
python
New contributor
$endgroup$
add a comment |
$begingroup$
This is the part of my program in python :
--> Path of input data and output data for learning
training_data = 'training_data.csv'
training_data_name = 'training_data'
--> csv Skip the first line, which is the load header, and skip it
training_data = np.genfromtxt(training_data, delimiter=",", skip_header=1, dtype='float32')
training_input_data = training_data[:, :n_Input]
training_output_data = training_data[:, n_Input:]
real_col = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]
imag_col = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]
real_col_out = [0]
imag_col_out = [1]
training_real_input = training_input_data[:, real_col]
training_imag_input = training_input_data[:, imag_col]
training_real_output = training_output_data[:, real_col_out]
training_imag_output = training_output_data[:, imag_col_out]
-->From up prog, I want to relation complex value .csv in python.
This down program if I use just array or constant value is success,
but if I want relation from .csv can not run.
real_input = tf.constant(real_col)
imag_input = tf.constant(imag_col)
tf.complex(real_input, imag_input)
real_output = tf.constant(real_col_out)
imag_output = tf.constant(imag_col_out)
tf.complex(real_output, imag_output)
--> How to relation .csv and tensorflow in complex value?
I hope all of you can help me...
Thank you
python
New contributor
$endgroup$
This is the part of my program in python :
--> Path of input data and output data for learning
training_data = 'training_data.csv'
training_data_name = 'training_data'
--> csv Skip the first line, which is the load header, and skip it
training_data = np.genfromtxt(training_data, delimiter=",", skip_header=1, dtype='float32')
training_input_data = training_data[:, :n_Input]
training_output_data = training_data[:, n_Input:]
real_col = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]
imag_col = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]
real_col_out = [0]
imag_col_out = [1]
training_real_input = training_input_data[:, real_col]
training_imag_input = training_input_data[:, imag_col]
training_real_output = training_output_data[:, real_col_out]
training_imag_output = training_output_data[:, imag_col_out]
-->From up prog, I want to relation complex value .csv in python.
This down program if I use just array or constant value is success,
but if I want relation from .csv can not run.
real_input = tf.constant(real_col)
imag_input = tf.constant(imag_col)
tf.complex(real_input, imag_input)
real_output = tf.constant(real_col_out)
imag_output = tf.constant(imag_col_out)
tf.complex(real_output, imag_output)
--> How to relation .csv and tensorflow in complex value?
I hope all of you can help me...
Thank you
python
python
New contributor
New contributor
edited 8 mins ago
Anggraini Puspitasari
New contributor
asked 14 mins ago
Anggraini PuspitasariAnggraini Puspitasari
11
11
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Anggraini Puspitasari is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49512%2fcomplex-value-neural-network-use-csv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Anggraini Puspitasari is a new contributor. Be nice, and check out our Code of Conduct.
Anggraini Puspitasari is a new contributor. Be nice, and check out our Code of Conduct.
Anggraini Puspitasari is a new contributor. Be nice, and check out our Code of Conduct.
Anggraini Puspitasari is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Data Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f49512%2fcomplex-value-neural-network-use-csv%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown