Regio Magadanensis

Multi tool use

Regio Magadanensis
Res apud Vicidata repertae:
regioCivitas:
RussiaLocus:
62°54′0″N 153°42′0″ESitus interretialis
Fines
Subdivisio superior: Russia
Territoria finitima: Territorium Fortunianum, Iacutia, Districtus autonomus Tschucoticus, territorium Camtschaticum
Forma
Area: 465 464 chiliometrum quadratum
Caput: Magadan
Subdivisiones: Magadan Urban Okrug, Olsky District, Omsukchansky District, Evensk Urban Okrug, Srednekansky District, Susumansky District, Ust-Omchug Urban Okrug, Khasynsky District, Yagodninsky District
Gubernium
Praefectus: Sergey Nosov
Vita
Incolae: 144 091
Zona horaria: Magadan Time
Sigla
Siglum autoraedarum: 49
Regio Magadanensis[1] seu Magadanica[2] (Russice Магаданская область, tr. Magadanskaja oblast' ) est subiectum Foederationis Russicae, anno 1953 creatum, et anno 2000 in Districtum Foederalem Extremorientalem Russicum inclusum.
In parte septentrio-orientali Russiae sita, cum districtu autonomo Tschucotico (Tschuktschorum) in septentrione, territorio Camtschatico in oriente, re publica Iacutia in occidente et territorio Fortuniano in meridie contermina, mari Ochotensi in meridie alluetur, regio Magadanensis aream 462 464 km2 et circa 146 milia incolarum (anno 2016) habet. Metropolis regionis est Magadan.
Notae |
↑ "Regio Magadanensis, districtus Tenkinensis, montes inter fl. Detrin et fl. Bochaptscha, in summitate plana schistosa" [1].
↑ "... in prov. Magadanica"[2].
Nexus externus |

|
Vicimedia Communia plura habent quae ad regionem Magadanensem spectant.
|
- Situs interretialis administrationis regionis Magadanensis
SiSvScF,B9Oi,9F0Ia9jL hyebb6Rmo0K,Q,NPtym2TG4oQHG1w,uGU piOCOgCIr1
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...