Anna Magnani

Multi tool use

Anna Magnani
Res apud Vicidata repertae:
Nativitas:
7 Martii 1908;
RomaObitus:
26 Septembris 1973;
RomaPatria:
Italia
Officium
Munus: actor, scriptor scaenicus, film actor
Familia
Coniunx: Goffredo Alessandrini
Memoria
Laurae: Academy Award for Best Actress, Silver Bear for Best Actress, Golden Globe Award for Best Actress – Motion Picture Drama, BAFTA Award for Best Actress in a Leading Role, David di Donatello for Best Actress, Nastro d'Argento for Best Actress, Nastro d'Argento for Best Supporting Actress, National Board of Review Award for Best Actress, New York Film Critics Circle Awards, Sant Jordi Prize, Volpi Cup for Best Actress, Hollywood Walk of Fame
Anna Magnani (nata die 7 Martii 1908 Romae; ibidem cancro mortua die 26 Septembris 1973) fuit actrix Italica, quae multa praemia accepit, inter alia praemium Academiae anno 1956 ut actrix optima. Multos annos more uxorio cum histrione Maximo Serato vivebat, qui pater eorum filii Lucae fuit. Parva statura ei cognomen Nannarellae impositum est.
Pelliculae selectae |
Nexus externi |
Biographia in film-zeit.de .mw-parser-output .existinglinksgray a,.mw-parser-output .existinglinksgray a:visited{color:gray}.mw-parser-output .existinglinksgray a.new{color:#ba0000}.mw-parser-output .existinglinksgray a.new:visited{color:#a55858}
(Germanice)
De Anna Magnani in Indice Interretiali Pellicularum
(Anglice)
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad biographiam spectat. Amplifica, si potes!
|
ul7I2NmQ 7dKolVbM,hKeH5tLhqJ,boNFKoEHR5n5dL up0ouja
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...