Hiericus

Multi tool use
Hiericus (-untis)[1] vel sere Iericho[2] vel Hiericho[3] (Hebraice יְרִיחוֹ; Arabice أريحا ʿArīḥā) est urbs in Territoriis Palaestinensibus in ripa Iordanis dextra sita. 250 m sub maris aequore posita est urbs in orbe terrarum maxime depressa. Ab oriente fere quattuor chiliometris a limite Iordanico distat et fere octo chiliometris a Mari Mortuo a meridie sito.
Urbs, cuius nomen a deo lunae nomine Iarich deductum est, ad antiquissimam viam mercatoriam adiacet. Numerus incolarum hodie est circiter 25 000. Hiericus se "urbem mundi antiquissam" nominat; investigationes archaeologicae demonstrant urbem pluries deletam et post longum intervallum iterum aedificatam esse. Hiericus etiam cognomine urbs palmarum ornatur.
Bibliographia |
- Israel Finkelstein, Neil Asher Silberman: Keine Posaunen vor Jericho. Die archäologische Wahrheit über die Bibel. Beck, Monaci 2002, ISBN 3-423-34151-3
- Kathleen M. Kenyon: Digging up Jericho. Benn, Londinii 1957.
- Kathleen M. Kenyon, Thomas A. Holland: Excavations at Jericho. Vol. 5. The pottery phases of the tell and other finds. British School of Archaeology in Jerusalem, Londinii 1983. ISBN 0-9500542-5-9
- Kathleen M. Kenyon: Excavations at Jericho. Vol. 3. The architecture and stratigraphy of the Tell. British School of Archaeology in Jerusalem, Londinii 1981. ISBN 0-9500542-3-2
- Hamdan Taha, Ali Qleibo: Jericho, a Living History: Ten Thousand Years of Civilization. Hierosolymis 2010, ISBN 978-9950-351-02-8, in interrete (PDF, 8,1 MB)
Nexus externi |

|
Vicimedia Communia plura habent quae ad Hiericuntem spectant.
|
- Tell Sultan
- Imagines ex Iericho
Notae |
↑ Gaius Plinius, Naturalis Historia 5.70.6
↑ Iohannes Iacobus Hofmannus, Lexicon universale (1698) ~
↑ Ierichō, fem. indecl. (Ἱεριχώ), Vulgata, Num. 22,1 et al. – Adi. Ierichontīnus vel Ierichuntīnus 3.
.mw-parser-output .stipula{padding:3px;background:#F7F8FF;border:1px solid grey;margin:auto}.mw-parser-output .stipula td.cell1{background:transparent;color:white}

|
Haec stipula ad geographiam spectat. Amplifica, si potes!
|
h2rZWXZ7wzNjazqcd zV IX 74ACUoDaBEYwlc3zsfGEq2tdwr bm,7u5V N0rK pTn6ALyWp UBl0RKF6DgHHfref58AV
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...