SVM with Tensorflow












1












$begingroup$


I have an array of Numpy with the following data, for example:



['13 .398249765480822 ''19 .324784598731966' '80 .98629514090669 '
  '-3.703122956721927e-06' '80 .98629884402965 ''24 .008452881790028'
  '679.6408224307851' '2498.8247399799975', 'fear']


And another array of Numpy with the same length and different numbers and another label that is 'neutral'.



The fact is that I'm using the code (Setosa) of Github and other articles to make a binary classifier (fear or neutral) but I get the following error because I do not know how to do so that I take into account all the numbers in the array and not as the code of Setosa, which only takes into account two when performing the mesh.



## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([[x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]] for x in matrix])
y_vals = np.array([1 if y[8] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = 150

# Initialize placeholders
x_data = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 8], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

# Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


The error obtained is:



File "test.py", line 154, in <module>
prediction_grid: grid_points})
ValueError: Cannot feed value of shape (30119320, 2) for Tensor u'Placeholder_2:0', which has shape '(?, 8)'


I know they do not have the same shape but I do not know how to change it or what to do because I need to make a classifier with the 8 features and with the two classes, 'neutral' and 'fear'.



Original code is here.










share|improve this question









New contributor




Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Please provide a link to the code for later references.
    $endgroup$
    – Esmailian
    6 hours ago
















1












$begingroup$


I have an array of Numpy with the following data, for example:



['13 .398249765480822 ''19 .324784598731966' '80 .98629514090669 '
  '-3.703122956721927e-06' '80 .98629884402965 ''24 .008452881790028'
  '679.6408224307851' '2498.8247399799975', 'fear']


And another array of Numpy with the same length and different numbers and another label that is 'neutral'.



The fact is that I'm using the code (Setosa) of Github and other articles to make a binary classifier (fear or neutral) but I get the following error because I do not know how to do so that I take into account all the numbers in the array and not as the code of Setosa, which only takes into account two when performing the mesh.



## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([[x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]] for x in matrix])
y_vals = np.array([1 if y[8] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = 150

# Initialize placeholders
x_data = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 8], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

# Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


The error obtained is:



File "test.py", line 154, in <module>
prediction_grid: grid_points})
ValueError: Cannot feed value of shape (30119320, 2) for Tensor u'Placeholder_2:0', which has shape '(?, 8)'


I know they do not have the same shape but I do not know how to change it or what to do because I need to make a classifier with the 8 features and with the two classes, 'neutral' and 'fear'.



Original code is here.










share|improve this question









New contributor




Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Please provide a link to the code for later references.
    $endgroup$
    – Esmailian
    6 hours ago














1












1








1





$begingroup$


I have an array of Numpy with the following data, for example:



['13 .398249765480822 ''19 .324784598731966' '80 .98629514090669 '
  '-3.703122956721927e-06' '80 .98629884402965 ''24 .008452881790028'
  '679.6408224307851' '2498.8247399799975', 'fear']


And another array of Numpy with the same length and different numbers and another label that is 'neutral'.



The fact is that I'm using the code (Setosa) of Github and other articles to make a binary classifier (fear or neutral) but I get the following error because I do not know how to do so that I take into account all the numbers in the array and not as the code of Setosa, which only takes into account two when performing the mesh.



## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([[x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]] for x in matrix])
y_vals = np.array([1 if y[8] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = 150

# Initialize placeholders
x_data = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 8], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

# Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


The error obtained is:



File "test.py", line 154, in <module>
prediction_grid: grid_points})
ValueError: Cannot feed value of shape (30119320, 2) for Tensor u'Placeholder_2:0', which has shape '(?, 8)'


I know they do not have the same shape but I do not know how to change it or what to do because I need to make a classifier with the 8 features and with the two classes, 'neutral' and 'fear'.



Original code is here.










share|improve this question









New contributor




Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have an array of Numpy with the following data, for example:



['13 .398249765480822 ''19 .324784598731966' '80 .98629514090669 '
  '-3.703122956721927e-06' '80 .98629884402965 ''24 .008452881790028'
  '679.6408224307851' '2498.8247399799975', 'fear']


And another array of Numpy with the same length and different numbers and another label that is 'neutral'.



The fact is that I'm using the code (Setosa) of Github and other articles to make a binary classifier (fear or neutral) but I get the following error because I do not know how to do so that I take into account all the numbers in the array and not as the code of Setosa, which only takes into account two when performing the mesh.



## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([[x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]] for x in matrix])
y_vals = np.array([1 if y[8] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = 150

# Initialize placeholders
x_data = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 8], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

# Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


The error obtained is:



File "test.py", line 154, in <module>
prediction_grid: grid_points})
ValueError: Cannot feed value of shape (30119320, 2) for Tensor u'Placeholder_2:0', which has shape '(?, 8)'


I know they do not have the same shape but I do not know how to change it or what to do because I need to make a classifier with the 8 features and with the two classes, 'neutral' and 'fear'.



Original code is here.







classification tensorflow svm






share|improve this question









New contributor




Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 3 hours ago









Stephen Rauch

1,52551330




1,52551330






New contributor




Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 8 hours ago









ManuManu

62




62




New contributor




Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Manu is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    Please provide a link to the code for later references.
    $endgroup$
    – Esmailian
    6 hours ago


















  • $begingroup$
    Please provide a link to the code for later references.
    $endgroup$
    – Esmailian
    6 hours ago
















$begingroup$
Please provide a link to the code for later references.
$endgroup$
– Esmailian
6 hours ago




$begingroup$
Please provide a link to the code for later references.
$endgroup$
– Esmailian
6 hours ago










1 Answer
1






active

oldest

votes


















0












$begingroup$

This code is written only for 2D inputs, it cannot be used for 8D inputs.



Here is an example on stackoverflow for tensorflow's SVM tf.contrib.learn.SVM.



Also, here is an easy to use SVM example in python (without tensorflow).



About the code



The 2D assumption is deeply integrated into the code for prediction_grid variable and the plots.



An important section is when a grid needs to be created:



x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]


which creates a $150^2 times 2$ grid_points. This grid is later used for 2D plots. Since grid_points size is $150^d times d$, it raises MemoryError for 8D (even for 4D).



Here is an altered version of the code that I used to experiment with higher dimensions. It avoids Memory Error by changing the grid step from 0.02 to 1, thus decreasing $150^d$ to $3^d$ (increase the grid_step for wider ranges of inputs).



import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

dimension = 8
N = 300
grid_step = 1 # default value was 0.02

x_dummy = np.random.random((N, dimension))
y_dummy = np.random.choice(['fear', 'abc'], (N, 1))
matrix = np.hstack((x_dummy, y_dummy))

## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([x[0:dimension] for x in matrix])
y_vals = np.array([1 if y[dimension] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = N

# Initialize placeholders
x_data = tf.placeholder(shape=[None, dimension], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, dimension], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
# this code is used as a generalization to work with all dimensions
x_ranges = np.vstack((x_vals.min(axis=0) - 1, x_vals.max(axis=0) + 1)).T
aranges = [np.arange(x_range[0], x_range[1], grid_step) for x_range in x_ranges]
print('grid size:', np.power(len(aranges[0]), dimension))
meshes = np.meshgrid(*aranges)
grid_points = np.vstack(tuple([mesh.ravel() for mesh in meshes])).T
print('grid size:', grid_points.shape)
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})

# Plot points and grid
# this is the old mesh generation code that is kept since it is used in the plots
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx_arange = np.arange(x_min, x_max, grid_step)
yy_arange = np.arange(y_min, y_max, grid_step)
xx, yy = np.meshgrid(xx_arange,yy_arange)
size = np.power(len(xx), 2)
grid_predictions = grid_predictions[0:size].reshape(xx.shape)

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


Output:



Step #75
Loss = -251.9497
Step #150
Loss = -476.96854
Step #225
Loss = -701.92444
Step #300
Loss = -927.2843
grid size: 6561
grid size: (6561, 8)





share|improve this answer











$endgroup$













  • $begingroup$
    Thanks for the answer. Therefore, if I have understood correctly there is no way to perform SVM with Tensorflow with an 8D dimension. Is there another way to perform SVM with 8D as you say without being Tensorflow? I have to do it in python for my teacher (he does it in Matlab with 22D)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    @Manu I’m happy to help.
    $endgroup$
    – Esmailian
    5 hours ago










  • $begingroup$
    @Manu you can use SVM for way higher dimensions, just not THIS code. I've added another non-tensorflow resource, see if it helps.
    $endgroup$
    – Esmailian
    5 hours ago












  • $begingroup$
    with you code I obtained this error: ValueError: broadcast dimensions too large. In meshes = np.meshgrid(*aranges)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    Still the same...
    $endgroup$
    – Manu
    5 hours ago












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "557"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Manu is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48624%2fsvm-with-tensorflow%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

This code is written only for 2D inputs, it cannot be used for 8D inputs.



Here is an example on stackoverflow for tensorflow's SVM tf.contrib.learn.SVM.



Also, here is an easy to use SVM example in python (without tensorflow).



About the code



The 2D assumption is deeply integrated into the code for prediction_grid variable and the plots.



An important section is when a grid needs to be created:



x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]


which creates a $150^2 times 2$ grid_points. This grid is later used for 2D plots. Since grid_points size is $150^d times d$, it raises MemoryError for 8D (even for 4D).



Here is an altered version of the code that I used to experiment with higher dimensions. It avoids Memory Error by changing the grid step from 0.02 to 1, thus decreasing $150^d$ to $3^d$ (increase the grid_step for wider ranges of inputs).



import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

dimension = 8
N = 300
grid_step = 1 # default value was 0.02

x_dummy = np.random.random((N, dimension))
y_dummy = np.random.choice(['fear', 'abc'], (N, 1))
matrix = np.hstack((x_dummy, y_dummy))

## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([x[0:dimension] for x in matrix])
y_vals = np.array([1 if y[dimension] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = N

# Initialize placeholders
x_data = tf.placeholder(shape=[None, dimension], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, dimension], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
# this code is used as a generalization to work with all dimensions
x_ranges = np.vstack((x_vals.min(axis=0) - 1, x_vals.max(axis=0) + 1)).T
aranges = [np.arange(x_range[0], x_range[1], grid_step) for x_range in x_ranges]
print('grid size:', np.power(len(aranges[0]), dimension))
meshes = np.meshgrid(*aranges)
grid_points = np.vstack(tuple([mesh.ravel() for mesh in meshes])).T
print('grid size:', grid_points.shape)
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})

# Plot points and grid
# this is the old mesh generation code that is kept since it is used in the plots
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx_arange = np.arange(x_min, x_max, grid_step)
yy_arange = np.arange(y_min, y_max, grid_step)
xx, yy = np.meshgrid(xx_arange,yy_arange)
size = np.power(len(xx), 2)
grid_predictions = grid_predictions[0:size].reshape(xx.shape)

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


Output:



Step #75
Loss = -251.9497
Step #150
Loss = -476.96854
Step #225
Loss = -701.92444
Step #300
Loss = -927.2843
grid size: 6561
grid size: (6561, 8)





share|improve this answer











$endgroup$













  • $begingroup$
    Thanks for the answer. Therefore, if I have understood correctly there is no way to perform SVM with Tensorflow with an 8D dimension. Is there another way to perform SVM with 8D as you say without being Tensorflow? I have to do it in python for my teacher (he does it in Matlab with 22D)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    @Manu I’m happy to help.
    $endgroup$
    – Esmailian
    5 hours ago










  • $begingroup$
    @Manu you can use SVM for way higher dimensions, just not THIS code. I've added another non-tensorflow resource, see if it helps.
    $endgroup$
    – Esmailian
    5 hours ago












  • $begingroup$
    with you code I obtained this error: ValueError: broadcast dimensions too large. In meshes = np.meshgrid(*aranges)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    Still the same...
    $endgroup$
    – Manu
    5 hours ago
















0












$begingroup$

This code is written only for 2D inputs, it cannot be used for 8D inputs.



Here is an example on stackoverflow for tensorflow's SVM tf.contrib.learn.SVM.



Also, here is an easy to use SVM example in python (without tensorflow).



About the code



The 2D assumption is deeply integrated into the code for prediction_grid variable and the plots.



An important section is when a grid needs to be created:



x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]


which creates a $150^2 times 2$ grid_points. This grid is later used for 2D plots. Since grid_points size is $150^d times d$, it raises MemoryError for 8D (even for 4D).



Here is an altered version of the code that I used to experiment with higher dimensions. It avoids Memory Error by changing the grid step from 0.02 to 1, thus decreasing $150^d$ to $3^d$ (increase the grid_step for wider ranges of inputs).



import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

dimension = 8
N = 300
grid_step = 1 # default value was 0.02

x_dummy = np.random.random((N, dimension))
y_dummy = np.random.choice(['fear', 'abc'], (N, 1))
matrix = np.hstack((x_dummy, y_dummy))

## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([x[0:dimension] for x in matrix])
y_vals = np.array([1 if y[dimension] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = N

# Initialize placeholders
x_data = tf.placeholder(shape=[None, dimension], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, dimension], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
# this code is used as a generalization to work with all dimensions
x_ranges = np.vstack((x_vals.min(axis=0) - 1, x_vals.max(axis=0) + 1)).T
aranges = [np.arange(x_range[0], x_range[1], grid_step) for x_range in x_ranges]
print('grid size:', np.power(len(aranges[0]), dimension))
meshes = np.meshgrid(*aranges)
grid_points = np.vstack(tuple([mesh.ravel() for mesh in meshes])).T
print('grid size:', grid_points.shape)
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})

# Plot points and grid
# this is the old mesh generation code that is kept since it is used in the plots
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx_arange = np.arange(x_min, x_max, grid_step)
yy_arange = np.arange(y_min, y_max, grid_step)
xx, yy = np.meshgrid(xx_arange,yy_arange)
size = np.power(len(xx), 2)
grid_predictions = grid_predictions[0:size].reshape(xx.shape)

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


Output:



Step #75
Loss = -251.9497
Step #150
Loss = -476.96854
Step #225
Loss = -701.92444
Step #300
Loss = -927.2843
grid size: 6561
grid size: (6561, 8)





share|improve this answer











$endgroup$













  • $begingroup$
    Thanks for the answer. Therefore, if I have understood correctly there is no way to perform SVM with Tensorflow with an 8D dimension. Is there another way to perform SVM with 8D as you say without being Tensorflow? I have to do it in python for my teacher (he does it in Matlab with 22D)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    @Manu I’m happy to help.
    $endgroup$
    – Esmailian
    5 hours ago










  • $begingroup$
    @Manu you can use SVM for way higher dimensions, just not THIS code. I've added another non-tensorflow resource, see if it helps.
    $endgroup$
    – Esmailian
    5 hours ago












  • $begingroup$
    with you code I obtained this error: ValueError: broadcast dimensions too large. In meshes = np.meshgrid(*aranges)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    Still the same...
    $endgroup$
    – Manu
    5 hours ago














0












0








0





$begingroup$

This code is written only for 2D inputs, it cannot be used for 8D inputs.



Here is an example on stackoverflow for tensorflow's SVM tf.contrib.learn.SVM.



Also, here is an easy to use SVM example in python (without tensorflow).



About the code



The 2D assumption is deeply integrated into the code for prediction_grid variable and the plots.



An important section is when a grid needs to be created:



x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]


which creates a $150^2 times 2$ grid_points. This grid is later used for 2D plots. Since grid_points size is $150^d times d$, it raises MemoryError for 8D (even for 4D).



Here is an altered version of the code that I used to experiment with higher dimensions. It avoids Memory Error by changing the grid step from 0.02 to 1, thus decreasing $150^d$ to $3^d$ (increase the grid_step for wider ranges of inputs).



import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

dimension = 8
N = 300
grid_step = 1 # default value was 0.02

x_dummy = np.random.random((N, dimension))
y_dummy = np.random.choice(['fear', 'abc'], (N, 1))
matrix = np.hstack((x_dummy, y_dummy))

## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([x[0:dimension] for x in matrix])
y_vals = np.array([1 if y[dimension] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = N

# Initialize placeholders
x_data = tf.placeholder(shape=[None, dimension], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, dimension], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
# this code is used as a generalization to work with all dimensions
x_ranges = np.vstack((x_vals.min(axis=0) - 1, x_vals.max(axis=0) + 1)).T
aranges = [np.arange(x_range[0], x_range[1], grid_step) for x_range in x_ranges]
print('grid size:', np.power(len(aranges[0]), dimension))
meshes = np.meshgrid(*aranges)
grid_points = np.vstack(tuple([mesh.ravel() for mesh in meshes])).T
print('grid size:', grid_points.shape)
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})

# Plot points and grid
# this is the old mesh generation code that is kept since it is used in the plots
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx_arange = np.arange(x_min, x_max, grid_step)
yy_arange = np.arange(y_min, y_max, grid_step)
xx, yy = np.meshgrid(xx_arange,yy_arange)
size = np.power(len(xx), 2)
grid_predictions = grid_predictions[0:size].reshape(xx.shape)

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


Output:



Step #75
Loss = -251.9497
Step #150
Loss = -476.96854
Step #225
Loss = -701.92444
Step #300
Loss = -927.2843
grid size: 6561
grid size: (6561, 8)





share|improve this answer











$endgroup$



This code is written only for 2D inputs, it cannot be used for 8D inputs.



Here is an example on stackoverflow for tensorflow's SVM tf.contrib.learn.SVM.



Also, here is an easy to use SVM example in python (without tensorflow).



About the code



The 2D assumption is deeply integrated into the code for prediction_grid variable and the plots.



An important section is when a grid needs to be created:



x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]


which creates a $150^2 times 2$ grid_points. This grid is later used for 2D plots. Since grid_points size is $150^d times d$, it raises MemoryError for 8D (even for 4D).



Here is an altered version of the code that I used to experiment with higher dimensions. It avoids Memory Error by changing the grid step from 0.02 to 1, thus decreasing $150^d$ to $3^d$ (increase the grid_step for wider ranges of inputs).



import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

dimension = 8
N = 300
grid_step = 1 # default value was 0.02

x_dummy = np.random.random((N, dimension))
y_dummy = np.random.choice(['fear', 'abc'], (N, 1))
matrix = np.hstack((x_dummy, y_dummy))

## SVM con Tensorflow
sess = tf.Session()
x_vals = np.array([x[0:dimension] for x in matrix])
y_vals = np.array([1 if y[dimension] == 'fear' else -1 for y in matrix])

# Split the train data and testing data
train_indices = np.random.choice(len(x_vals), int(round(len(x_vals)*0.8)), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

class1_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class1_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == 1]
class2_x = [x[0] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]
class2_y = [x[1] for i, x in enumerate(x_vals_train) if y_vals_train[i] == -1]

# Declare batch size
batch_size = N

# Initialize placeholders
x_data = tf.placeholder(shape=[None, dimension], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, dimension], dtype=tf.float32)

# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1, batch_size]))

# Gaussian (RBF) kernel
gamma = tf.constant(-10.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))

# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))

# Gaussian (RBF) prediction kernel
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1), [-1, 1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1), [-1, 1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))

prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target), b), pred_kernel)
prediction = tf.sign(prediction_output - tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))

# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)

# Training loop
loss_vec =
batch_accuracy =
for i in range(300):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = x_vals[rand_index]
rand_y = np.transpose([y_vals[rand_index]])
sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
loss_vec.append(temp_loss)

acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
y_target: rand_y,
prediction_grid: rand_x})
batch_accuracy.append(acc_temp)

if (i + 1) % 75 == 0:
print('Step #' + str(i + 1))
print('Loss = ' + str(temp_loss))

# Create a mesh to plot points in
x_vals = x_vals.astype(np.float)
# this code is used as a generalization to work with all dimensions
x_ranges = np.vstack((x_vals.min(axis=0) - 1, x_vals.max(axis=0) + 1)).T
aranges = [np.arange(x_range[0], x_range[1], grid_step) for x_range in x_ranges]
print('grid size:', np.power(len(aranges[0]), dimension))
meshes = np.meshgrid(*aranges)
grid_points = np.vstack(tuple([mesh.ravel() for mesh in meshes])).T
print('grid size:', grid_points.shape)
[grid_predictions] = sess.run(prediction, feed_dict={x_data: x_vals,
y_target: np.transpose([y_vals]),
prediction_grid: grid_points})

# Plot points and grid
# this is the old mesh generation code that is kept since it is used in the plots
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx_arange = np.arange(x_min, x_max, grid_step)
yy_arange = np.arange(y_min, y_max, grid_step)
xx, yy = np.meshgrid(xx_arange,yy_arange)
size = np.power(len(xx), 2)
grid_predictions = grid_predictions[0:size].reshape(xx.shape)

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Petal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()


Output:



Step #75
Loss = -251.9497
Step #150
Loss = -476.96854
Step #225
Loss = -701.92444
Step #300
Loss = -927.2843
grid size: 6561
grid size: (6561, 8)






share|improve this answer














share|improve this answer



share|improve this answer








edited 3 hours ago

























answered 6 hours ago









EsmailianEsmailian

2,581318




2,581318












  • $begingroup$
    Thanks for the answer. Therefore, if I have understood correctly there is no way to perform SVM with Tensorflow with an 8D dimension. Is there another way to perform SVM with 8D as you say without being Tensorflow? I have to do it in python for my teacher (he does it in Matlab with 22D)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    @Manu I’m happy to help.
    $endgroup$
    – Esmailian
    5 hours ago










  • $begingroup$
    @Manu you can use SVM for way higher dimensions, just not THIS code. I've added another non-tensorflow resource, see if it helps.
    $endgroup$
    – Esmailian
    5 hours ago












  • $begingroup$
    with you code I obtained this error: ValueError: broadcast dimensions too large. In meshes = np.meshgrid(*aranges)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    Still the same...
    $endgroup$
    – Manu
    5 hours ago


















  • $begingroup$
    Thanks for the answer. Therefore, if I have understood correctly there is no way to perform SVM with Tensorflow with an 8D dimension. Is there another way to perform SVM with 8D as you say without being Tensorflow? I have to do it in python for my teacher (he does it in Matlab with 22D)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    @Manu I’m happy to help.
    $endgroup$
    – Esmailian
    5 hours ago










  • $begingroup$
    @Manu you can use SVM for way higher dimensions, just not THIS code. I've added another non-tensorflow resource, see if it helps.
    $endgroup$
    – Esmailian
    5 hours ago












  • $begingroup$
    with you code I obtained this error: ValueError: broadcast dimensions too large. In meshes = np.meshgrid(*aranges)
    $endgroup$
    – Manu
    5 hours ago












  • $begingroup$
    Still the same...
    $endgroup$
    – Manu
    5 hours ago
















$begingroup$
Thanks for the answer. Therefore, if I have understood correctly there is no way to perform SVM with Tensorflow with an 8D dimension. Is there another way to perform SVM with 8D as you say without being Tensorflow? I have to do it in python for my teacher (he does it in Matlab with 22D)
$endgroup$
– Manu
5 hours ago






$begingroup$
Thanks for the answer. Therefore, if I have understood correctly there is no way to perform SVM with Tensorflow with an 8D dimension. Is there another way to perform SVM with 8D as you say without being Tensorflow? I have to do it in python for my teacher (he does it in Matlab with 22D)
$endgroup$
– Manu
5 hours ago














$begingroup$
@Manu I’m happy to help.
$endgroup$
– Esmailian
5 hours ago




$begingroup$
@Manu I’m happy to help.
$endgroup$
– Esmailian
5 hours ago












$begingroup$
@Manu you can use SVM for way higher dimensions, just not THIS code. I've added another non-tensorflow resource, see if it helps.
$endgroup$
– Esmailian
5 hours ago






$begingroup$
@Manu you can use SVM for way higher dimensions, just not THIS code. I've added another non-tensorflow resource, see if it helps.
$endgroup$
– Esmailian
5 hours ago














$begingroup$
with you code I obtained this error: ValueError: broadcast dimensions too large. In meshes = np.meshgrid(*aranges)
$endgroup$
– Manu
5 hours ago






$begingroup$
with you code I obtained this error: ValueError: broadcast dimensions too large. In meshes = np.meshgrid(*aranges)
$endgroup$
– Manu
5 hours ago














$begingroup$
Still the same...
$endgroup$
– Manu
5 hours ago




$begingroup$
Still the same...
$endgroup$
– Manu
5 hours ago










Manu is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Manu is a new contributor. Be nice, and check out our Code of Conduct.













Manu is a new contributor. Be nice, and check out our Code of Conduct.












Manu is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Data Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48624%2fsvm-with-tensorflow%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to label and detect the document text images

Tabula Rosettana

Aureus (color)