I Have a Dream

Multi tool use

-2
Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.

Martinus Lutherus King Jr. orationem habet.
"I Have a Dream" (Latine, 'Somnium somnio.') est oratio a Martino Luthero King Jr. coram contione ambulante pro labore et libertate Vasingtoniae die 28 Augusti 1963 habita. In oratione, King finem postulavit rassismi. Oratio erat temporis momentum definiens in motis iuribus civilibus.
Oratio est satira ex dicto The American Dream(Ille Americanum Somnium) unde Manumissionem a Lincoln King arguit non exercita essent, immo, Afroamericani, id est nigricolores Americani non essent liberi et viverent misere.
I Have a Dream numeratur opus clarissimus rhetoricus. Oratio alludit et continet excerpta ex declaratione libertatis Civitatum Foederatarum et constitutione Civitatum Foederatarum et edicto Manumissionis et oratione Gettysburgiensis et Biblis[1] et utitur pacto rhetorico anaphora sicut more sermonis ex Libro Psalmorum et Isaiae ac ecclesiae methodistiae.
Excerptum |
I have a dream that one day this nation will rise up and live out the true meaning of its creed: "We hold these truths to be self-evident: that all men are created equal."
I have a dream that one day on the red hills of Georgia the sons of former slaves and the sons of former slave owners will be able to sit down together at a table of brotherhood.
I have a dream that one day even the state of Mississippi, a state sweltering with the heat of injustice and sweltering with the heat of oppression, will be transformed into an oasis of freedom and justice.
I have a dream that my four little children will one day live in a nation where they will not be judged by the color of their skin but by the content of their character.
I have a dream today.
Mihi est somnium ut aliquando haec civitas sublimet et agat naturam veram principii sui: "Iudicamus has veritates per ipsas manifestas esse: Homines omnes aequale creantur.’
Mihi est somnium ut aliquando in collibus rubris Georgiae filii servorum una cum filiis dominorum quondam ad mensam fraternitatis discumbere possint.
Mihi est somnium ut aliquando vel civitas Mississippia, civitas sudata ob aestus iniustitiae et sudata ob aestus oppressionis, commutabitur in oasem libertatis et iustitiae.
Mihi est somnium ut aliquando quattuor mei liberi tenues habitent in civitate ubi non iudicabuntur ob colorem cutis sed ob eorum virtutes.
Mihi est somnium hodie.
Nexus externi |
Oratio "Mihi est somnium"
↑ Liber Psalmorum: 30, 5, Liber Isaiae: 40, 4-5, et Liber Amos: 5, 24
3 J4bT6U8rgDsTpa 6zTgrISjjvc7NogVYDmEfoV4Bt zTD9aJozM4UF9c
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...