Iter in Vasingtoniam Occupationis Libertatisque Causa

Multi tool use

-2
Latinitas huius rei dubia est. Corrige si potes. Vide {{latinitas}}.

Conspectus ex Monumento Lincoln die 28 Augusti, 1968.
|
Suademus haec pagina ad Grassatio in Vasingtoniam Occupationis Libertatisque Causa moveatur. Sententiam tuam, quaesumus, profer in pagina disputationis.
It is proposed to move this page to Grassatio in Vasingtoniam Occupationis Libertatisque Causa. Please give your opinion on the talk page.
|
Iter in Vasingtoniam Occupationis Libertatisque Causa, breviter Magnum Iter in Vasingtoniam more phonographici vulgati post eventum,[1] fuit una manifestatio motus iurum civilium ex contionibus magnarum rerum publicarum iurum humanorum causa in historia Civitatum Foederatarum, dare iura civilia et oeconomica postulanda praecipue pro Africanis Americanis. Habitum est Vasingtoniae Districtus Columbiae. Permulta milia hominum Vasingtoniae coierunt die Martis 27 Augusti 1963. Proximo die, Martinus Lutherus King Jr. coram Monumento Lincolniano stante, "I Have a Dream" orationem historicam habuit[2], ubi finem rassismi postulavit. Spectatores 75-80% participium nigrores esse existimaverunt. [3]
Notae |
↑ King III, Martin Luther (2010-08-25). "Still striving for MLK's dream in the 21st century". The Washington Post. Washington, DC
↑ Bayard Rustin Papers (1963-08-28), March on Washington (Program), National Archives and Records Administration
↑ "50th Anniversary of the 1963 March on Washington for Jobs and Freedom Panel Discussion at the Black Archives of Mid-America" (press release). The U.S. National Archives and Records Administration. 7 Augusti 2013 .
Nexus interni
- Concursus Mulierum (2017)
Yms6gqWwHtKY T2xX
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...