Sinaloa

Multi tool use
|
Hanc paginam intra 3 menses augere oportet. Cuique paginae opus est: lemmate paginae nomine congruente; textu, qui rem definit notabilitatemque eius exprimit; fonte externo certo; nexibus internis ex hac pagina et ad hanc paginam ducentibus. Plura ... DEENFR
|

Sinaloa
Res apud Vicidata repertae:
civitasCivitas:
MexicumLocus:
25°0′10″N 107°30′10″WSitus interretialis
Fines
Subdivisio superior: Mexicum
Territoria finitima: Chihuahua
Forma
Area: 57 377 chiliometrum quadratum
Caput: Culiacana
Subdivisiones: Ahome, Angostura Municipality, Badiraguato, Concordia Municipality, Cosalá Municipality, Culiacán Municipality, Choix Municipality, Elota Municipality, Escuinapa Municipality, El Fuerte Municipality, Guasave, Mazatlán Municipality, Mocorito Municipality, Rosario Municipality, Salvador Alvarado, San Ignacio Municipality, Sinaloa Municipality, Navolato Municipality
Gubernium
Consilium: Congress of Sinaloa
Vita
Incolae: 2 767 761
Zona horaria: UTC-7
Sinaloa est civitas in meridianis Mexici partibus sita. Contermina est ad septentrionem Durangum, ad orientem Naiaritis, ad occidentem Sonora et ad austrum Oceano Pacifico. Municipia habet 18.
Civitates Mexicanae
|
|
Aquae Calidae • California Inferior • California Inferior Meridionalis • Campecum • Chiapae • Chihuahua • Civitas Angelorum • Civitas Mexici • Civitas Sancti Ludovici Potosiensis • Coahuila • Colima • Durangum • Guanaxuatum • Guaxaca • Guerrero • Hidalgum • Mechoacana • Morelum • Naiaritis • Nova Legio • Queretarum • Quintana Roo • Sinaloa • Sonora • Tabasca • Tamaulipas • Tlaxcala • Vera Crux • Xalisca • Yucatania • Zacatecae • • Pagus foederalis Mexicanus Aguascalientes • Baja California • Baja California Sur • Campeche • Chiapas • Chihuahua • Coahuila • Colima • Durango • Guanajuato • Guerrero • Hidalgo • Jalisco • México • Michoacán • Morelos • Nayarit • Nuevo León • Oaxaca • Puebla • Querétaro • Quintana Roo • San Luis Potosí • Sinaloa • Sonora • Tabasco • Tamaulipas • Tlaxcala • Veracruz • Yucatán • Zacatecas • • Distrito Federal
|
|
Exvq NU7WbdmDx,Ys
Popular posts from this blog
Tabula multilinguis Rosettana in Museo Britannico ostenditur. Tabula Rosettana, [1] etiam titulo OGIS 90 agnita, est stela decreto de rebus sacris in Aegypto anno 196 a.C.n. lato inscripta. Tabula iuxta Rosettam Aegypti, urbem in delta Nili et ad oram maris Mediterranei iacentem, anno 1799 a milite Francico reperta est. Inventio stelae, linguis duabus scripturisque tribus inscriptae, eruditis Instituti Aegypti statim nuntiata est; ibi enim iussu imperatoris Napoleonis eruditi omnium scientiarum (sub aegide Commissionis Scientiarum et Artium) properaverant cum expeditione Francica. Qua a Britannis mox debellata, tabula Rosettana Londinium missa hodie apud Museum Britannicum iacet. Textus Graecus cito lectus interpretationi textuum Aegyptiorum (in formis hieroglyphica et demotica expressorum) gradatim adiuvit. Denique textum plene interpretatus est Ioannes Franciscus Champollion. Ab opere eruditorum cumulativo coepit hodiernus scripturae hieroglyphicae linguaeque Aegyptiae a...
1
$begingroup$
This is what I mean as document text image: I want to label the texts in image as separate blocks and my model should detect these labels as classes. NOTE: This is how the end result should be like: The labels like Block 1, Block 2, Block 3,.. should be Logo, Title, Date,.. Others, etc. Work done: First approach : I tried to implement this method via Object Detection, it didn't work. It didn't even detect any text. Second approach : Then I tried it using PixelLink. As this model is build for scene text detection, it detected each and every text in the image. But this method can detect multiple lines of text if the threshold values are increased. But I have no idea how do I add labels to the text blocks. PIXEL_CLS_WEIGHT_all_ones = 'PIXEL_CLS_WEIGHT_all_ones' PIXEL_C...
1
$begingroup$
I have this LSTM model model = Sequential() model.add(Masking(mask_value=0, input_shape=(timesteps, features))) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2, return_sequences=False)) model.add(Dense(features, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) and shapes X_train (21, 11, 5), y_train (21, 5) . Each timestep is represented by 5 features and return_sequences is set to False because I want to predict one 5D array (the next timestep) for each input sequence of 11 timesteps. I get the error ValueError: y_true and y_pred have different number of output (5!=1) If I reshape the data as X_train (21, 11, 5), y_train (21, 1, 5) instead I get the error ValueError: Inva...